

IFMIFNecessity and Status of Preparation

Presented by Eberhard Diegele, F4E

International Workshop, MFE Road Mapping in the ITER Era 8th September 2011 Princeton 2011,

This contribution and any comments *during* the workshop do not necessarily represent the opinion or the policy of the EC or F4E

Elements of ^a Strategy for Materials R&D R&D – for the next Two Decades (I)

RAFM steels "only" choice for TBM (alternative options with high risk)

- **Development mission driven. Technology part of the programme**
- **Full characterisation of RAFM steels in the next decade (for TBM use).**
- $-$ "Code qualification" required up to some dpa [RCC-MRx/SDC].
- $-$ Irradiation campaigns in fission reactors ("Material Test Reactors"). **Test materials with fission neutrons from nuclear reactors:**
	- **Adequate flux flux.**
	- **BUT**
	- **Energy spectrum: not adequate, high energy tail missing.**
	- **Insufficient H and He production by transmutation.**

Elements of a Strategy for Materials R&D – for the next Two Decades (II)

Construct and start operation of ^a 14 MeV neutron facility (IFMIF) a

- **Adequate flux,**
- **Fusion typical irradiation temperatures**
- At "homogeneous" test conditions throughout a sample.
- **Stable irradiation conditions (T) (#)**

IFMIF

is "mandatory" to generate engineering data for DEMO design rules for E d f Lif ditind o Life conditions.

is useful in testing materials and sub-components prior to approval for application in power plants. DEMO will provide the endurance component tests.

Is a most valuable source for verifications of multi-scale modelling predictions.

Code qualify material: Property f (T, Tirrad, fluence, environment, load-stress-strain) – This allows to together with a code framework transferability to other conditions With tem perature excursions (annealin g of defects) – risk to loose data point

Elements of ^a Strategy for Materials R&D R&D – for the next Two Decades - (III)

The He issue

- **Fission reactors produce insufficient rates of He and H**
- Irradiation in fission reactors gives only non-conservative approach for **degradation of materials.**

Various tricks or methods used: tricks

- **B and Ni-doped steels in MTR: ~a few appm He/dpa.**
- **Fe54 enriched steels in MTR: ~2 appm He/dpa.**
- **Mixed spallation-neutron spectrum: ~100 appm He /dpa.**
- **(Multi) Ion beam irradiation: up to 10000 appmHe/dpa.**
- **All these experiments needed to increase knowledge and understanding of the microstructure.**
- **Modelling and understanding of irradiation results under various conditions is clearly needed.**

Different material

Cost. 1kg 500k\$

 \triangleright Transmutations

¾ pulsed 10 micro-meter

Elements of ^a Strategy for Materials R&D R&D – for the next Two Decades - (IV)

Accompanying programs:

- **Modeling of irradiation effects towards an understanding of irradiation damage over the full scale (from quantum physics to engineering analyses).**
- **"Extrapolation" of dislocation damage from fission data to fusion environment.**
- **Simulations with predictive capability.**
- **Integrated approach with "physics-based" modeling and simulations in the meso to macro scale at the interface between materials science and technical application (simulating "real conditions" and "real components") will be an key for success.**

Elements of ^a Strategy for Materials R&D R&D – for the next Two Decades - (V)

In parallel: Optimization and further development of RAFM steels

- **For use with DEMO**
- □ In parallel: Optimization and further development of ODS/NCF-type **steels**

□ In parallel: Development of "new"/"advanced" materials for high **temperature application.**

Including, both

Irradiation campaigns in fission reactors (high fluence, ~100 dpa).

Strong science based programme to accumulate knowledge and **understanding of irradiation effects to "design materials".**

This summary could have been from yesterday

However, it is from ... 2006 ...

Long Term Materials Development

The EU Road Map

E. Diegele EDFA -CSU Garching

IEA-Meeting July 10-12, 2006, Tokyo, Japan

Fusion Materials Development Path Materials Performance/Component specific Loading - Stage- IV Demonstrate solution to concept-specific issues Performance under complex loading history (T, stress, multi-axial strain fields & gradients) & environmental conditions Qualified Material, Demonstration of Performance - Stage- III Complete database for final design & licensing Validate constitutive equations & models Demonstration of Performance Limits - Stage- II Database for conceptual design Demonstrate life time goals (He issue) Demonstrate proof-of-principle solutions, design methodology Evaluation-modification cycle to optimize performance Materials Screening & Materials "Design"` - Stage- I Identify candidate alloy composition, compatibility, irradiation stability, proof of principle for fabrication and joining technologies -Validation of

models and tools (microstructure)

FNSF/DEMO Nuclear Facility Needs

Example 3 Fission Reactors

• The capability to perform irradiation experiments in fission reactors is essential for identifying the most promising materials and specimen geometries for irradiation in an intense neutron source.

Example 20 Fusion Relevant Neutron Sources

- Overcoming radiation damage degradation is the rate-controlling step in fusion materials development.
- Evaluation of radiation effects requires simultaneous displacement damage $(\sim 150$ dpa) and He generation (~ 1500 appm).

■Fusion Nuclear Science Facility (predecessor to DEMO)

• Nuclear facility to explore the potential for synergistic effects in a fully integrated fusion neutron environment. Data and models generated from non-nuclear structural test facilities, fission reactor studies and the intense neutron source will be needed to design this facility.

Long History - Recall from...

Early History

Need for a Neutron Source to Test & Qualify Materials for DEMO Recognized for > 30 y*

- U.S. Pathways Study [M.A. Abdou et al., Fus. Tech. 8 (1985) 2595-2645]
	- Concluded that fission reactors & accelerators "are useful and their use should be maximized worldwide, but that they have serious limitations"
	- Reactor use & new non-neutron facilities recommended "over next 15 years"
	- Low total power, high power density D-T devices then required for integrated tests & validation
- IEA Study [Doran, et al. J. Fus. Energy 8, (1989) 137-141]
	- Evaluated plasma sources (RFPs, high-density Z pinches, beam-plasma mirrors) and accelerator-based sources (d-Li, spallation)
	- Recommended further investigation of 3 options: d-Li, spallation, beam-plasma
- Subsequent analysis [D.G. Doran et al., J. Nucl. Mat. 174 (1990) 125-134] ×
	- Concluded that differences in damage parameters not great enough to permit a selection of preferred alternative on basis of displacement rate, primary recoil spectrum, & important gaseous and solid transmutations.
- Follow-on IEA Review [T. Kondo et al., J. Nucl. Mat. 191-194 (1992) 100-107] ×,
	- * Concluded that D-Li neutron source concept (basis of IFMIF) was preferred because of relatively lower neutron energy tail & most mature technology base
		- Beam plasma source found to provide best simulation of a fusion reactor, but scientific feasibility was still in question
		- " Spallation source found not generally favored by materials community would be "a viable candidate" only if it can be attained at much less expense than the alternatives."

*T.H. Batzer et al, Conceptual Design of a Mirror Reactor for a Fusion Engineering Research Facility, Proc. 5th IAEA Conf. on Plas. Phys. & Contrl. Nucl. Fus. Res. (1974); and E.W. Pottmeyer, Jr., FMIT Facility at Hanford, J. Nucl. Materials 85-86 (1979) 463-465.

Long History - Recall from...

Recent U.S. History

Similar Need for a Fusion Irradiation Facility Recently Articulated by the U.S. Community

- 2007 FESAC (Greenwald) report
	- Selected fusion irradiation facility as one of nine unprioritized initiatives
	- Recognized such a facility is the IFMIF mission
	- Recommended assessing potential for alternative facilities to reduce or possibly eliminate the need for the US to participate as a full partner in **İFMIF**
- 2009 FES Research Needs Workshop (ReNeW)
	- Advocated a fusion-relevant neutron source to be an essential mission requirement
	- Cited 3 options (same as 1989 IEA) as examples for further evaluation and selected based on technically attractiveness and cost effectiveness
- 2011 FES Fusion Nuclear Science Pathways Assessment

Indicate that slides was provided by this group of authors

IFMIF in the Context of Materials Research

<u>A. Möslang,</u> N. Baluc, E. Diegele, U. Fischer, R. Heidinger, A. Ibarra, P. Garin, V. Massout, G. Miccichè, A. Mosnier, P. Vladimirov

Authors on behalf of the fusion materials and IFMIF community

KIT – University of the State of Baden-Wuerttemberg and national Laboratory of the Helmholtz Association
National Laboratory of the Helmholtz Association **www.kit.edu**u

A. Möslang et al.

Strategic Missions:

- Electricity, Hydrogen, Heat
- Contribute to lower greenhouse gas emission1-3 dpa

Specific challenges for fusion:

- Short development path
- More demanding loading conditions

ITER IFMIF

20-40/year

A. Möslang et al.

Main missions of an intense neutron source in roadmaps to fusion power roadmaps

- **Qualification of candidate materials**, in terms of generation of *engineering data* for **design, licensing** and **safe operation** of ^a fusion DEMO reactor, up to about full lifetime of anticipated use of DEMO
- **Completion, calibration and validation of databases** (today mainly generated from fission reactors and particle accelerators)
- Advanced material irradiation (towards power plant application)
	- **Promote, verify or confirm selection processes**
- Validation of fundamental understanding of radiation response of materials hand in hand with computational material science
	- Science-related modeling of irradiation effects should be validated and benchmarked at length-scale and time-scale relevant for engineering application
	- **EXPERIMENTS EXPERIMENTS EXPERIMENTS EXPERIMENTS EXPERIMENTS EXPERIMENTS EXPERIMENTS EXPERIMENTS EXPERIMENTS** parameters

TOP Level Requirements for an Intense Neutron Source

Neutron spectrum

Should simulate the first wall neutron spectrum of a fusion reactor as closely as possible in terms of PKA spectrum, important transmutation reactions, and gas production (He, H)

Neutron fluence accumulation

Up to 120 dpa $_{\sf NRT}$ in <4 years applicable to 0.5 litre volume.

Neutron flux and temperature gradients

Flux gradient <10% over the gauge volume of the Small Scale Specimens Temperature gradient [±]3% within individual capsules (~90 specimens).

- **Machine availability** ≥ 70%
- **Time structure**

quasi continuous operation

Good accessibility of irradiation volume & high flexibility for further upgrades

High ranking International Advisory Panels (late 80-ies to mid 90-ies) concluded that these requirements can be best fulfilled with a D-Li stripping source.

TOP Level Requirements for an Intense Neutron Source

Neutron spectrum

Should simulate the first wall neutron spectrum of a fusion reactor as closely as possible in terms of PKA spectrum, important transmutation reactions, and gas production (He, H)

Neutron fluence accumulation

Up to 120 dpa $_{\sf NRT}$ in <4 years applicable to 0.5 litre volume.

Neutron flux and temperature gradients

Flux gradient <10% over the gauge volume of the Small Scale Specimens Temperature gradient [±]3% within individual capsules (~90 specimens).

- **Machine availability** ≥ 70%
- **Time structure**

quasi continuous operation

Good accessibility of irradiation volume & high flexibility for further upgrades

High ranking International Advisory Panels (late 80-ies to mid 90-ies) concluded that these requirements can be best fulfilled with a D-Li stripping source.

Fusion Power Plants: Material Challenges beyond ITER

Main Relations between ITER, IFMIF and DEMO

Is today IFMIF still the best choice? Neutronics: IFMIF vs. the Spallation source MaRIE (1/8)

- **Ma**tter **R**adiation **I**nteractions in **E**xtremes -

IFMIF vs. the Spallation source MaRIE (2/8)

Neutron spectra

IFMIF vs. the Spallation source MaRIE (3/8)

Displacement Damage for different rigs

Di l t D C i f f iliti Displacemen Damage: Comparison o facilities IFMIF vs. the Spallation source MaRIE (4/8)

H li P d ti Helium Production IFMIF vs. the Spallation source MaRIE (5/8)

$20 -$ **MaRIE , 1 MW** 15 He/dpa ratio in the contract of the contract o 10 appm \top 51234567890irradiation rig

DEMO relevant steels.

IFMIF meets therelevant ratio in all test modules

IFMIF vs. the Spallation source MaRIE (6/8)

Flux/volume considerations

IFMIF vs. the Spallation source MaRIE (7/8) **Spallation product accumulation**

IFMIF vs. the Spallation source MaRIE (8/8) **Effect of spallation elements on Ductile Brittle Transition**

Elements like S, P enhance severely the brittleness of Cr-steels

Principle of IFMIF

A. Möslang et al.

Current activities: EVEDA

- The Engineering Validation and Engineering Design Activities, conducted in the framework of the Broader Approach aim at:
	- **Providing the Engineering Design of IFMIF**
	- **Validating the key technologies**, more particularly
		- The low energy part of the accelerator (very high intensity, D⁺ CW beam)
The lithium facility (flow, purity, diagnostics)
		-
		- **The high flux modules (temperature regulation, resistance to irradiation)**
- **Strong priority has been put on Validation Activities, through**
	- **The Accelerator Prototype** (Constructed in EU,tested in Rokkasho, JA)
	- The **EVEDA Lithium Test Loop** (to be tested in Oarai, Japan)
	- Two complementary (temperature range) designs of High Flux Test Modules and an in-situ Creep fatigue Test Module

IFMIF: Implementation and Actors of the Project

International Fusion Materials Community (Users) Materials (Users)

A. Möslang et al.

Engineering Validation Activities The Accelerator Prototype

International Fusion Energy Research Centre gy

A. Möslang et al.

Facility Building $[40m^W, 80m^L, 33m^H]$ JAEA Oarai

- •**Commissioning** undergoing
- • Start of the experiments: June 2011

A. Möslang et al.

Engineering Validation Activities The High Flux Test Module

HELOKA-LP F ll l h li l t l Full scale helium gas coolant loop

IFMIF schedule - Optimistic scenario

Ad t Advan tages

- •On time for DEMO design
- \bullet Possible some impact on ITER TBM operation
- \bullet Present IFMIF team and expertise is maintained along the time

Challenge

• Significant EU budget required during FP8 2014-2020

IFMIF schedule - Reference scenario

Advantages

- \bullet IFMIF close to the time for DEMO (first data of IFMIF at same time than ITER DT results)
- •• Relatively low EU budget required before 2020 (the Host country can offer to support the International Team during some time)
- •Expertise and team developed during EVEDA can be maintained

IFMIF schedule - Pesimistic scenario

Ad t van tages

 \bullet No EU budget required before 2020

Problems

- •**IFMIF in the critical path of DEMO**
- \bullet The expertise developed during the EVEDA phase will be lost

Summary and Conclusions

¾ IFMIF meets fully the mission and the requirements of an intense fusion neutron source and is able to deliver timely the major pillars of a materials database for construction, licensing and safe operation of ^a DEMO reactor

¾Main Milestones:

- **June 2013**: Delivery of the Intermediate IFMIF Engineering Design Report
- J**une 2015**: Start of the experiments of the whole Accelerator Prototype
- **June 2017**: End of the studies in the framework of the BA agreement
- $Dec. 2013$ ec. 2013: End of IFMIF EVEDA for all activities not contributing to the Accelerator Prototype
- ¾It is expected that the Intermediate IFMIF Engineering Design Report will be the basis for an evaluation through for an international review panel. Based on that results, siting negotiations could start immediately
- \triangleright IFMIF needs funding during 2014-2020. Otherwise,
	- IFMIF will be at the critical path for DEMO, and
	- the power of the present team and its competence will be lost