

Preliminary consideration on basic requirements

-- diagnostic and CODAC

Qingwei YANG (杨青巍)

SouthWestern Institute of Physics (SWIP)

University of Science and Technology of China (USTC)

Jan 5 - 6, 2012, Beijing, China

The systems of diagnostics and CODAC would to be decided after the mission defined and physics designed.

CODAC

- Safety control: interrupt for serious events: nuclear, fire, earthquake, ...; interlock for nuclear, entries, ...
- Operational control: operation scheduling; interlock for power supply, vacuum, heating, fuelling, cooling, ...; interrupt for serious events.
- Plasma control: shape, configuration, MHD, disruption, ...
- Data: acquisition, access, communication, display,
- Others: tritium breeding control, ... according to decided mission.

Plasma diagnostics

- Configuration: plasma shape, displacement, ...
- Plasma parameters & profiles: density, temperature, radiation/emission, current density, bate, storage energy, rotation, D/T ratio, ...
- MHD instability: NTM, ELM, AEs, RWM, ...
- Fusion production: neutron & profiles, alpha particle, gamma ray, fusion power, ...
- Divertor and firstwall: radiation, heat load, erosion, damages, ...
- Others: Tritium retention, scientific study needs. ...

CODAC and diagnostics

		Safety control			Opera. control			Plasma control			Data		Others		
		Interlock	Data flow	interruption	Interlock	interruption	Scheduling	Configuration	MHD/disruption	Profiles	Data acquisition	Data comm.	Tritium issue	Scientific issues	
Diagnostics	Safety														
	Operational														
	Plasma														
	Blanket														
	Data access														

Big challenge of diagnostics

- Long time measurement: for plasma feedback control, ...
- Surviving form radiation: neutron, gamma ray.
- Reliable diagnostics: the current used diagnostics are too complicated for reactor. To explore the simple diagnostic systems and methods are necessary – integration diagnostic?
- New diagnostics development: for new studies in material, blanket, ...

Thank you for your attention