

Radiation Protection and Safety Consideration for CFETR

Presented by Qin ZENG, Gang SONG

Contributed by FDS Team

Institute of Nuclear Energy Safety Technology Chinese Academy of Sciences (INEST)

School of Nuclear Science and Engineering University of Science and Technology of China (USTC)

www.fds.org.cn

Contents

I. Safety Analysis

- Blanket Scenario
- Safety Analysis

II. Radiation Protection

- Object and Principle
- Research Contents
- Codes and Data Libraries

III. Summary

I. Safety Analysis

- Blanket Concept
- Safety Analysis

INEST · *USTC* CFETR: Options for Liquid Blanket

Multi-Types-of-Blankets

Multi-Testing-Phases

Option I : Liquid PbLi-based blanket for tritium breeding and energy production
--- SLL/DLL/DFLL

Option II : Uranium-loaded hybrid blanket for energy production

• Option III : Spent fuel-loaded hybrid blanket for energy production and waste transmutation

Safety Analyses

- Static analyses
- Dynamic analyses
 - Kinetics parameters
 - Accident analysis
 - Plant states and Selection of reference transients
 - Startup of Reactor
 - Unprotected Plasma OverPower (UPOP)
 - Unprotected Loss of Flow Accident (ULOFA)
 - Unprotected Loss of Coolant Accident (ULOCA)
 - Collapse Accident

Plant States and Selection of Reference Transients

Operational states

- > Normal operation
 - **Startup/Shutdown of the Reactor**
- Anticipated operational occurrences (AOOs) Protected Plasma OverPower (PPOP)

Unprotected /protected Transient OverPower (UTOP)

□ Accident conditions

- Within design basis accident (DBA) Unprotected Plasma OverPower (UPOP) Protected Loss of Flow Accident (LOFA) Protected Loss of Coolant Accident (LOCA) Protected Loss Of Heat Sink (LOHS)
- > Severe accidents

Unprotected Loss of Flow Accident (ULOFA) Unprotected Loss of Coolant Accident (ULOCA) Collapse Accident (CA)

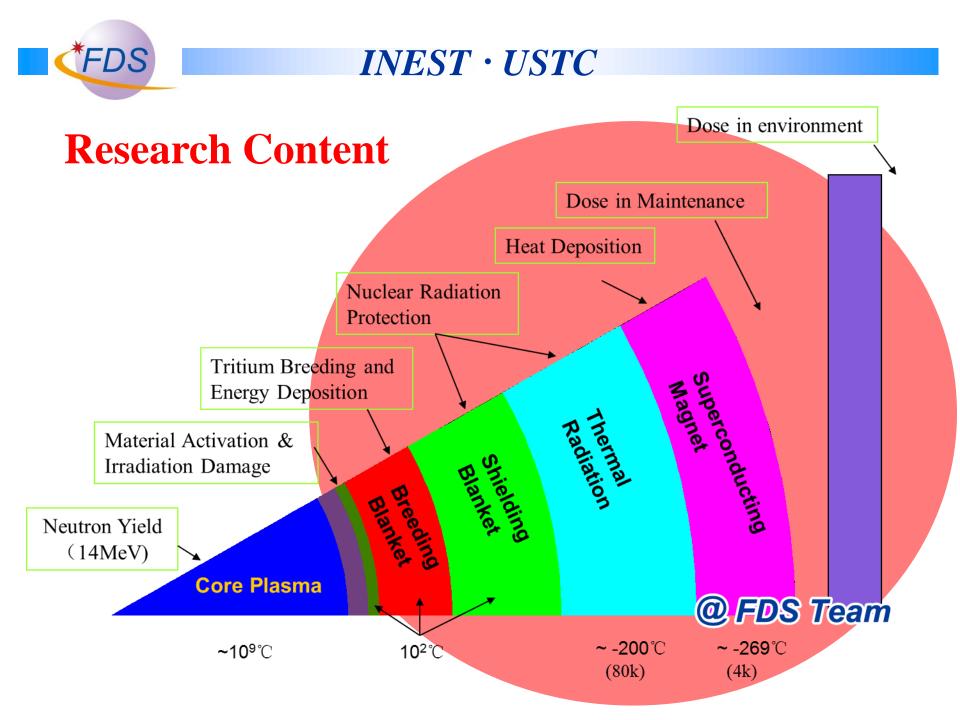
II. Radiation Protection

- Object and Principle
- Research Contents
- Codes and Data Libraries

INEST · USTC Object and Principle

Object:

- 1. To ensure the device safe operation (component and personnel safety)
- 2. Evaluation of radioactive waste


Principle : ALARA (As Low As Reasonable Achievable)

Radioactive division

Zone		Radiological Zone Identification	Total dose - external and internal exposure (1)	External exposure to hands, forearms, ankles and feet (2)
Unregulated zone		White zone	Effective dose < 80 µSv/month	
Supervised zone		Blue zone	Effective dose per hour $< 7.5 \mu\text{Sv}$	< 0.2 mSv/h
Controlled zone	-	Green zone	Effective dose per hour $< 25 \mu S v$	< 0.65 mSv/h
	Specially regulated	Yellow zone	Effective dose per hour < 2 mSv and Dose equivalent rate < 2 mSv/h	< 50 mSv/h
		Orange zone	Effective dose per hour < 100 mSv and Dose equivalent rate 100 mSv/h	< 2.5 Sv/h
	Forbidden	Red zone	Effective dose per hour > 100 mSv or Dose equivalent rate > 100 mSv/h	> 2.5 Sv/h

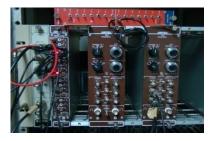
 $(1)\ \mbox{Total}$ dose rate is the sum of external dose rate and internal dose rate.

(2) In case of exposure of the eye lens (crystalline), these values should be multiplied by 0.3.

The second seco

Calculation and Analysis:

- Radiation Transport
- Material Activation & Irradiation Damage
- Radiation Dose


Measurement:

D-T neutron generator

HpGe spectrometer

Time of flight (TOF)

NaI photon spectrometer

Bonner sphere spectrometer

Tritium monitor

He-3 neutron intensity monitor

Portable neutron detector

INEST · USTC VisualBUS

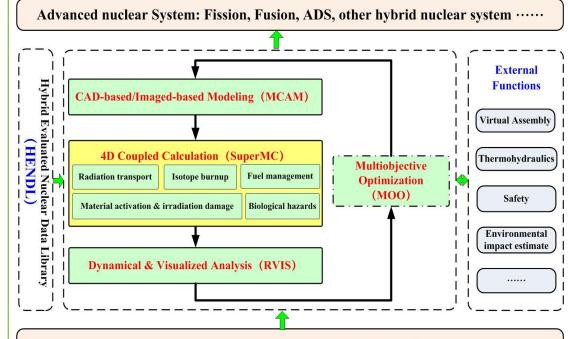
CAD-based Multi-Functional 4D Neutronics Simulation System

Main Functions:

CAD-based/Imaged-based Modeling

- Monte Carlo (MC) geometries
- Discrete Ordinates (SN) geometries
- MC-SN coupled geometries
- CT/MRI/Color images

4D Coupled Multi-Process Calculation


- Radiation Transport
- Isotope Burnup
- Material Activation & Irradiation Damage
- Radiation Dose
- Fuel management

Dynamical & Visualized Analysis

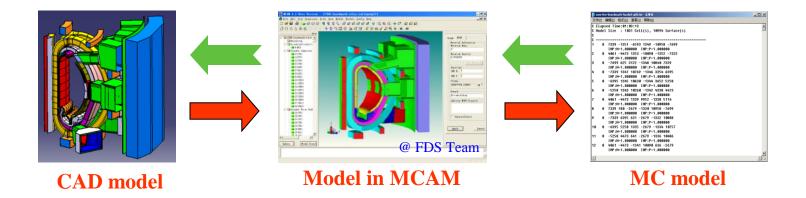
- Static / dynamic physical data fields
- Human virtual roaming & dosimetry assessment

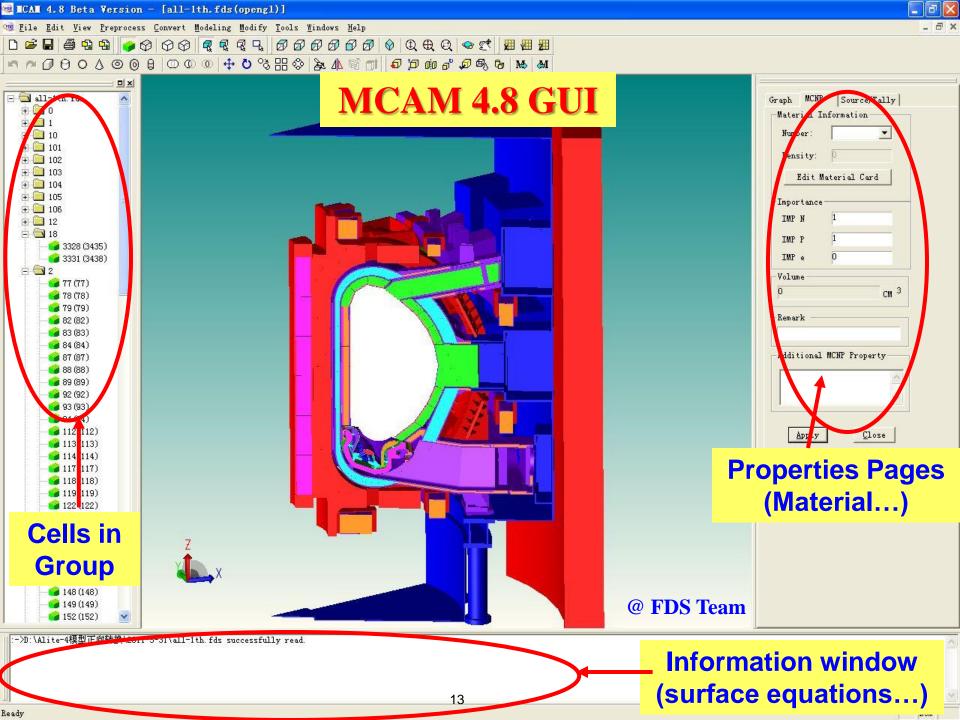
Multi-objective Optimization

- Artificially intelligent algorithms
- Space optimization of irregular complex solutions

Advanced Computer Technology: Parallel/Cloud/Intelligent Computation

- Hybrid Evaluated Nuclear Data Library for fusion/fission/ hybrid systems
- External functions for other physics process simulations such as virtual assembly, thermal-hydraulics, safety, environmental impact estimate etc.




MCAM4&5: Automatic Modeling for Nuclear Systems

CAD CAD

Converter Inverter Preprocessor Analyzer Creator

CAD → MCNP Conversion	
MCNP → CAD Reverse Conversion	
Model Simplifying & Repairing	
MCNP Model Analyzing & Editing	
CAD Geometry Model Creating	

SuperMC: Super Monte Carlo Simulation Program

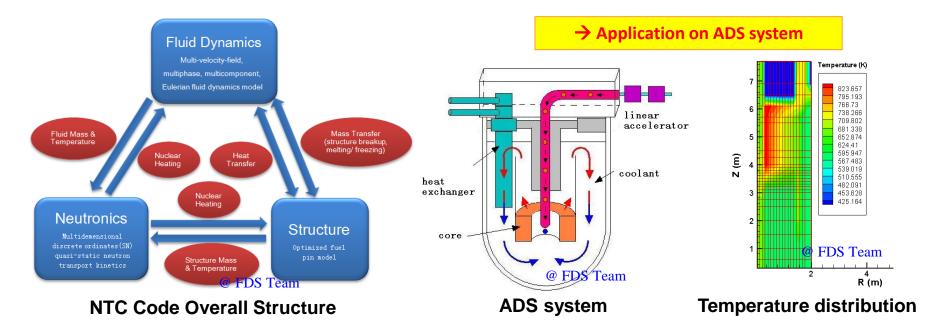
Major Features:

- Calculation of particle transport with Monte Carlo method, coupling with MOC / SN methods.
- Physical calculation functions for Radiation Transport / Isotope Burnup / Material Activation & Irradiation Damage / Radiation Dose/ Fuel Management.
- Direct integration of CAD-based/Imaged-based Modeling, Multi-Process Calculation and Dynamical & Visualized Analysis.
- > Adoption of parallel, cloud and intelligent computing technologies and service architecture.
- > Modular design for extension and integration easily.
- > Open and easy user interfaces for various applications based on WWW.

Starting Points:

- Learning from advantages of each state-of-the-art codes MCNP / TRIPOLI / GEANT / FLUKA / EGS etc.
- Making use of already developed technologies in VisualBUS4.
- > Being Driven by ADS/FDS/Medical Physics projects.

NTC: Neutronics-Thermohydraulics Coupled Simulation Program

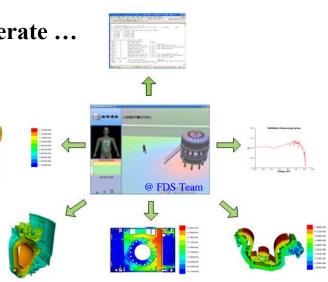

□ Automatic coupling calculation

- \rightarrow Multi-group SN quasi-static neutron transport equation
- \rightarrow Multi-velocity-field, multiphase, Eulerian, fluid-dynamics model

Transients safety analysis

- \rightarrow DBA (design basic accident) analysis
- \rightarrow Severe accident analysis

 \rightarrow Thermal reactor / fast reactor / subcritical reactor transient safety analysis



RVIS: Nuclear Radiation Virtual Simulation and Assessment System

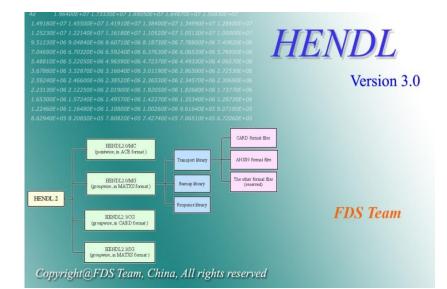
ALARA design of work scenarios in 3D virtual environment

- Modeling stage for work scenarios modeling CAD models import, models simplify, voxel models generate ...
- Design stage for scenarios definition Shield/repair/decommission scenarios definition ...
- Assessment stage for scenarios assessment dose calculation, virtual simulation, dose assessment...
- Optimization stage for scenarios optimization ALARA evaluation, comparison of different work scenarios, follow-up design ...

Hybrid Evaluated Nuclear Data Library - HENDL

From various international evaluated neutron nuclear data libraries, such as FENDL, ENDF/B, JENDL, JEF and BROND

Including Multi-function Working Libraries, Transport.lib, Burnup.lib, Activation.lib, Iriradiation.lib, Dosefactors.lib

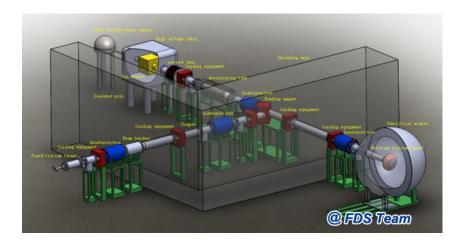

Including High neutron energy cross section Library up to 150MeV, HENDL-ADS applied in ADS system

Many Kinds of Group Energy Structure

- HENDL/CG (27n/21g)
- HENDL/MG (175n/42g)
- HENDL/FG (315n/42g)
- HENDL-ADS/MC (point-wise)

Various Kinds of Physics Effects

- Resonance self-shielding
- -Temperature Doppler
- Thermal neutron up-scattering


High Intensified Neutron Generator (HINEG) for Validation of Codes and Data Libraries

1. Parameters

- (1) Steady intensity: 10^{13} n/s
- (2) Pulse width: 1.5ns

2. Main functions:

- (1) Neutronics
- (2) Radiation protection
- (3) Nuclear technology

Summary

- The static and dynamic parameters will be calculated for specific CFETR scenario.
- Several codes and data lib. have been homedeveloped and improved recently.
- High Intensified Neutron Generator is necessary for validation of fusion nuclear codes and data libraries.

The End

Thanks for your attention !

Website: <u>www.fds.org.cn</u> E-mail: contact@fds.org.cn