

Preliminary considerations on the basis of engineering and technology of divertor design for CFETR

Minyou Ye

1th Workshop on MFE Development Strategy Beijing, January 5-6, 2012

Introduction

TokamakStellarator

Whichever case, need Divertor Configuration

D-T burning plasmas

Steady state operation

Challenges for Divertor design

Main Functions of Divertor:

- Exhaust the major part of the plasma thermal power
- Minimize the influx of impurities to the plasma
- Remove the fusion reaction helium ash and unburnt fuel.

The power exhaust (ITER as example)

Injected power (auxiliary heating: 40 MW)	Fusion power α-heating	500 MW
	+ auxiliary heating	140MW
P _{fus} = 500 MW	Loss: Bremstrahlung+	
	Synchroton Radiation	40MW
P _{rad} = 40 MW	Power load without	
	additional radiation:	100MW
	Wetted area:	
	2*U*width of strike zone	~ 4.0 m ²
	(2 *40 * 0.05)	
11	Power load	~ 25MW/m ²
Divertor plates	above technical limit (10 MW/m ²)	

Require divertor detachment to reduce heat load to < 10 MW/m2

General objectives and criteria are:

- (a) withstanding a peak heat flux of at least 10-15 MW/m²,
- (b) A modular design instead of large plate structures is required to reduce the thermal stresses,
- (c) keeping the divertor operating temperature window at the lower boundary higher than the ductile–brittle transition temperature (DBTT) limit and at the upper boundary lower than the re-crystallization temperature (RCT) limit of the structural components made of refractory alloys under irradiation,
- (d) the divertor has to survive a certain number of thermal cycles (100–1000) between operating temperature and RT during operation.

Design features have to be accounted for:

- (a) materials choices
- (b) transport of the cooling agent as closely as possible to the target plates in order to maintain the max. structure temperature as low as possible,
- (c) short heat conduction paths from the plasma-facing side to the cooled surface to maintain the maximum structure temperature below the RCT limit,
- (d) achieving high heat transfer coefficients while keeping the coolant mass flow rate,
- (e) joint constructions between the divertor components withstanding the thermocyclic loadings

Divertor Design Basis

The existing ITER divertor design and technology :

The ITER divertor is ready for procurement but it is an experimental component and the operational regimes that will allow its use without risk have to be demonstrated. But, Full W divertor design is not ready!

Experiences and achievements from current as well as projected tokamaks:

EAST, KSTAR, TORE-SUPRA, JT-60SA, JET, ASDEX-U, DIII-D and HL-2A.....

Development of new divertor concept for reactor:

- Snow-flake divertor to reduce peak heat load
- negative triangularity operation for divertor concept

(recommendation from Prof. M. Kikuchi)

Development of materials for PFM, structure

Snow-flake divertor

D. D. Ryutov, PoP 14, 064502 2007

- Subsystems to Integrate in lower part of vacuum vessel:
- -divertor cassettes with plasma facing components
- -cooling system to exhaust plasma and neutronic heat deposition
- -cryopumps to exhaust neutralized gas
- -diagnostics to monitor plasma re-attachment
- -Fuelling system to promote plasma detachment / mitigate re-attachment
- -RH equipment to maintain components and maintenance operations
- **System integration :** bring together all the component subsystems into one system ensuring that the subsystems function together as a system

ITER Divertor

Based on the ITER divertor design and technology and EAST divertor update:

- Optimize divertor configuration
- Adopt ITER-like vertical target structure
- Reduce peak heat load by partial detachment near the strike points
- **DT requires a full W divertor (** ITER Full W divertor design is not ready!)

Technological Developments of Tungsten:

- -Tungsten Coatings (low particle fluencies)
- Massive Tungsten (High particle fluencies , e.g. ITER,)

M. Merola : 1th ITER divertor meeting

- Physics R&D → Continuous process
- Technology R&D small-scale m/ups → end-2014
- Technology R&D semi-proto → 2015 2016
- Irradiation \rightarrow 2016 2019
- Design decisions on the basis of the pre-Design phase \rightarrow end-2014
- Development of 3D CAD models → mid-2015
- Design supporting analysis → early-2017
- Conceptual Design Review → mid-2017
- Final Design Review → July 2019
- Start procurement → November 2019

M. Merola : 1th ITER divertor meeting

There are a number aspects that are or could be potential issues for use of W in ITER

- Low density start-up/ramp-down and operation at low density and high power
- Achievement and control of divertor detachment with extrinsic seeding
- Level of core W concentration compatible with good confinement
- Compatibility of controlled ELM scenarios with W
- Damage due to unmitigated transients (ELMs and disruptions)
- Plasma operation on damaged surfaces
- Surface cracking following melting or repetitive, sub-threshold ELM loads
- Material property changes due to alloying with Be
- Surface morphology changes under exposure to mixed D/T/He fluxes
- Evaluation of W water-cooled PFC component performance under combined ITER-like ELM/disruption-like and steady-state loads
- Dust production (due to melt splashing, crack formation)

M. Merola : 1th ITER divertor meeting

The technology R&D required for the qualification of divertor VTs with a full-W armour, includes the following main sequential phases:

Technology R&D

- R&D and Manufacturing of small scale mock ups
- High heat flux performance tests
- R&D and Manufacturing of semi-prototypes
- High heat flux performance tests

Performance assessment under neutron-irradiation conditions

- Manufacturing of small-scale mock-ups
- Neutron irradiation of the mock-ups
- Post-irradiation high heat flux performance tests

--- A very significant programme of RH will be needed for reactor, but can be defined only once reactor conceptual design is available

--- Technology R&D needs time, more study for full W divertor,

--- The development and optimization of the divertor concept require a close link between the main issues: design, analyses, materials and fabrication technology, and experiments.

Thank you for your attention !

"SNOWFALKE": USING SECOND-ORDER NULL OF POLOIDAL FIELD TO IMPROVE DIVERTOR PERFORMANCE

Features of snowflake divertors

- Larger flux-expansion near the PF null
- Increased connection length
- Increased magnetic shear in the pedestal region (ELM suppression)
- Modified blob transport (stronger flux-tube squeezing near the null-point)
- Possibility to create this configuration with existing set of PF coils on the existing devices (TCV, NSTX, DIII-D....)
- Possibility to create "snowflake" in ITERscale machines with PF coils situated outside TF coils

Materials

Armour	CFC / Tungsten
Compliant layer	Copper
Heat Sink	CuCrZr
Steel Structure	316L(N)-IG / XM-19
Links and bolts	A660
Pins	AlBr

 \rightarrow See talk of V. Barabash