

The Concept Design of PS and CW System for CFETR

For meeting May 30-Jun. 1, 2012 in Hefei

Background and input

CFETR machine parameters:

- B_{to} : 5.3 / 4.5 T
- I_p : 12 / 10/ 07 MA
- Ř_o: 5.5 m
- A : 1.6 m, K : 1.8

Blanket thickness 1.0m

Superconductive coil just ITER like and size

Operation parameters:

Pfusion=200MW

Peng Fu

Duty cycle time ≥ 0.3 ~ 0.5

Heating system parameters

Ptotal =100MW (NBI 40MW)

Concept design of PS system

Concept design of CW system

Next work to be done

Summary

Power supply consists of

+ Power system and HV substation transformer high voltage to lower level

+ Pulsed power supply

magnet PS/ TF,CS, PF,VS, heating PS/microwave, NBI

★ Steady state power supply

CW, Cryoplant ,HVAC,...

★ Power plant

feed fusion power to grid

Peng Fu The Concept Design of PS and CW System for CFETR

Configuration of AC power electrical network

The Concept Design of PS and CW System for CFETR

Concept design of AC distribution

Capacity estimation of Pulsed power supply

Electrical load for CFETR	Max. reactive power	Max. active power
Magnet power supply	800Mvar	230MW
Loss	20Mvar	20MW
Heating and current drive	150Mvar	300MW
Total	970Mvar	550MW

SSEN power Estimation

ITER SSEN

Power supply type

Type of Loads:

SIC:	Safety Relevant loads (seismic requirements)
IP:	Investment Protection loads
A I	

OL: **Ordinary loads**

Power classification:

- **Class I**: Uninterruptible DC **Class II**: Uninterruptible AC
- **Class III** : Emergency AC power (temporarily interruptible)
- **Class IV** : AC grid power (indefinitely interruptible)

AC Voltage levels and tolerance range:

66kV + 10% 22 kV ± 10% $10 \text{ kV} \pm 10\%$ 6.6kV ± 10% 230V / 400V + 8%

DC Voltage levels: 110V & 48V

Pulsed power supply

Peng Fu

The Concept Design of PS and CW System for CFETR

Power plant system

- \star Use water steam to drive generator
- ★ Conversion efficiency 30~45%
- **★** Generator capacity 60~100MW

Concept design of PS system

Concept design of CW system

Next work to be done

Summary

CW system consists of

Tokamak cooling water system (TCWS) (100~150 °C, baking >200 °C)

★ Component Cooling Water System (CCWS)

PHT pump, microwave system, power supply, tritium building (30~55°C)

Chilled Water System (CHWS)

provide chilled water to PS, hot cell, air conditioning system ..., (~6°C)

Heat Rejection System (HRS)

Peng Fu

water circulation system, cooling tower system

The Concept Design of PS and CW System for CFETR

TCWS system consists of

ITER Parameters of CW

CFETR Parameters of CW

Peng Fu

The Concept Design of PS and CW System for CFETR

CW parameter estimation of CFETR

Subsystem	Clients	Thermal Power (MW)
TCWS	Power Loop	360
	NBI	80
	VV	4
ccws	ICH/ECH&CD	120
	Power Supply System	30
	Others	30
CHWS	HVAC & Components	30
Total		654MW

Concept design of PS system

Concept design of CW system

Next work to be done

Summary

Peng Fu

Next work to be done

Next work

- Design of PPEN, SSEN, Magnet power supply, CW
- Power grid requirement: short circuit capacity, Q, P, V
- Suitable CFETR Location from power supply side
- How big area is necessary for PS &CWS
- New technology in fusion power supply

Next work to be done

- ★ grid active power
- **★** grid short circuit capacity
- ★ Compatibility between pulsed power and grid

CN high voltage grid plan in 2015

R&D: power flow analysis, dynamic circuit analysis, oscillation

Next work to be done

CFETR PS area

ITER area:

18 building/180 Hectares PS &CWS \rightarrow 90 Hectares

CFETR: 90 hectares ?

- Preliminary consideration for PS &CW system has been performed, P=~650MW, S=1GMVA. If copper coil, >1.5GW
- Above work was based on in the a rough input, next work will be performed after the relevant requirement is fixed.

Thank you for your attention !