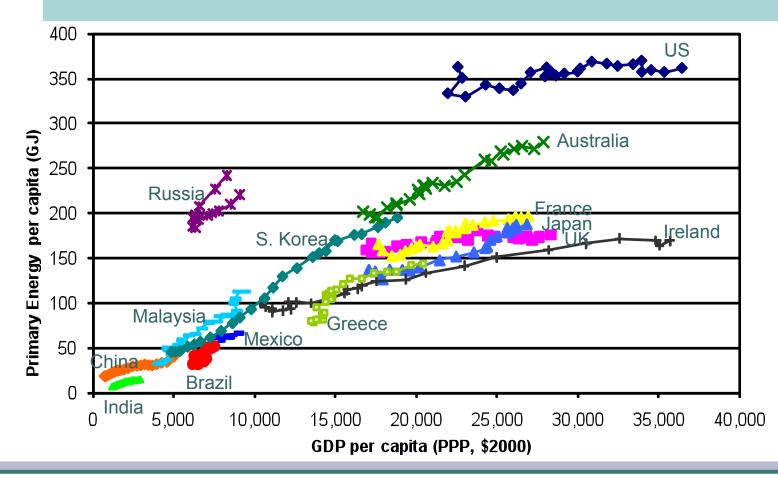
### Realization of Fusion Energy: An alternative fusion roadmap


Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego

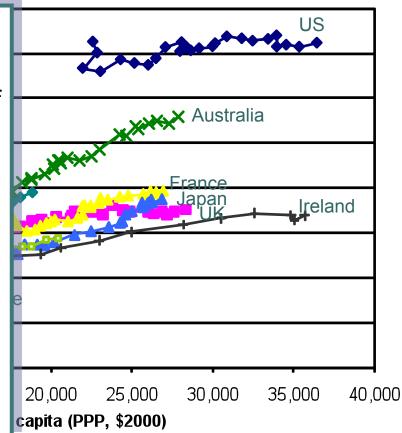
International Fusion Road-mapping Workshop, PPPL, 7-11 September 2011

### Is there a case for a "unified" international road-map for fusion?

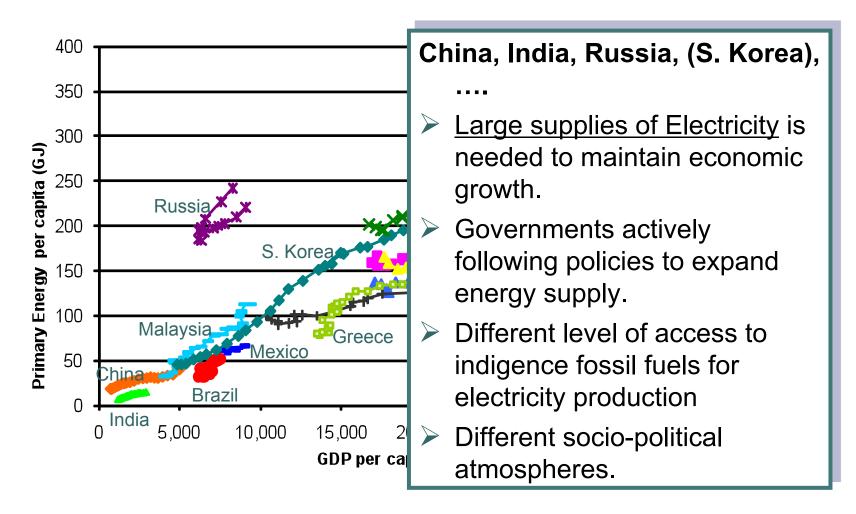
Rationale for fusion development varies substantially around the world.

### World needs a lot of energy!




 With industrialization of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate)

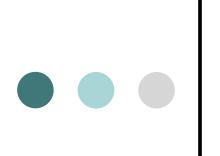
\* Data from IEA 2006 annual energy outlook


# However, energy needs are different in different parts of the world:

#### US, EU, Japan:

- Electricity supply needs are mainly for the replacement of existing power plants.
- Government regulations have been driving the choice of energy supply.
- Different level of access to indigence fossil fuels for electricity production.
- Different socio-political atmospheres.




# However, energy needs are different in different parts of the world:



### While current rationale for R&D differs, the ultimate goal would be the same.

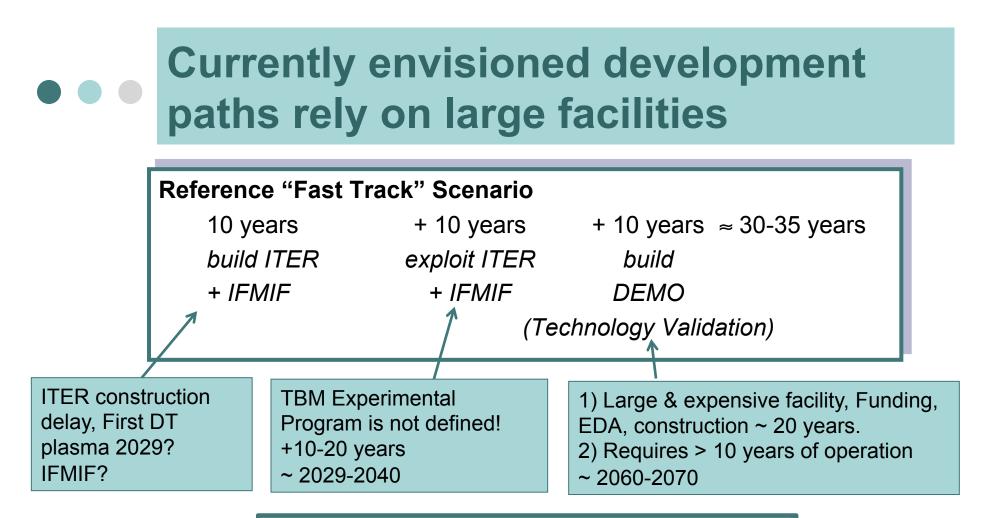
- Fusion R&D expenditures are justified to government agencies who have different priorities and, therefore, respond to different "Roadmaps."
  - Different R&D plans for the next decade.
- However, large-scale (multi-billion \$) fusion facilities beyond ITER and NIF can only be justified in the context of their contribution to energy supply. We will have
  - Different Customers (e.g., Power Producers)
  - Different criteria for success (e.g., Commercial viability)
  - Timing (e.g., Is there a market need?)
    - Fusion is NOT the only game in town!

Fusion roadmaps should include <u>all R&D needed to</u> <u>achieve commercial fusion power</u>



# All fusion roadmaps focus on large machine.

# Is this the cheapest/fastest approach?


### Fusion Energy Development Focuses on Facilities Rather than the Needed Science

- Current fusion development plans relies on large scale, expensive facilities:\*
  - Long lead times, \$\$\$
  - Expensive operation time
  - Limited number of concepts that can be tested
  - Integrated tests either succeed or fail (difficult to ascertain why they failed or succeed), this is an expensive and timeconsuming approach to optimize concepts.

\* Observations by ARIES Industrial Advisory Committee, 2007.

### What should a fusion roadmap

- Current fusion roadmaps which focus on "Demo" have a high probability of leading to lengthier and costlier programs (for commercial fusion).
  - Mission will be redefined to fit the "promised" time frame.
  - Cost, available data base, etc. will lead to further mission contraction, expanding the R&D needed after the next step and may also to un-necessary R&D.
  - Recall ITER history (proposed in mid-80s, many revision of its mission, considerable expenditure, ...).



2070: Decision to field 1<sup>st</sup> commercial plant barring NO SETBACK

Bottle neck: Sequential Approach relying on expensive machines! Huge risk in each step!

### Fusion Energy Development Focuses on Facilities Rather than the Needed Science

- Current fusion development plans relies on large scale, expensive facilities:\*
  - Long lead times, \$\$\$
  - Expensive operation time
  - Limited number of concepts that can be tested
  - Integrated tests either succeed or fail (difficult to ascertain why they failed or succeed), this is an expensive and timeconsuming approach to optimize concepts.
- \* Observations by ARIES Industrial Advisory Committee, 2007.

This is in contrast with the normal development path of any product in which the status of R&D necessitates a facility for experimentation.

# Developing Fusion Power Technologies (FNS)...

## Developing commercial fusion energy requires changes in our folklore:

- Fusion power technologies (fusion nuclear sciences) are in their early stages of development. We are NOT ready!
- Development of fusion nuclear sciences requires a large amount of resources.
  - We readily talk about multi-billion-\$ plasma-based facilities but frown at \$1B price tag of IFMIF.
- The perception that the only way to develop fusion nuclear sciences is to have 14-MeV neutrons is not correct (cook and look approach is very expensive and time-consuming)
  - A large potion of R&D can and should be performed in simulated environments (non-nuclear and/or fission test).
  - Fusion nuclear testing is needed only to validate the predicted performance plus all synergetic effects that were not foreseen.
  - 14-MeV neutron sources are NOT equal.

## Technical Readiness Levels provides a basis for assessing the development strategy

| nent              | Level | Generic Description                                                                     | ase     |
|-------------------|-------|-----------------------------------------------------------------------------------------|---------|
| ty of environment | 1     | Basic principles observed and formulated.                                               | e Phase |
|                   | 2     | Technology concepts and/or applications formulated.                                     | Science |
|                   | 3     | Analytical and experimental demonstration of critical function and/or proof of concept. | -       |
| Fidelity          | 4     | Component and/or bench-scale validation in a laboratory environment.                    | Applied |
| ncreased Fi       | 5     | Component and/or breadboard validation in a relevant environment.                       | ∞       |
|                   | 6     | System/subsystem model or prototype demonstration in relevant environment.              | Basic   |
| Inc               | 7     | System prototype demonstration in an operational environment.                           |         |
|                   | 8     | Actual system completed and qualified through test and demonstration.                   | Demo    |
|                   | 9     | Actual system proven through successful mission operations.                             | Phase   |

- Developed by NASA and are adopted by US DOD and DOE.
- TRLs are very helpful in defining R&D steps and facilities.

Increased integration

# TRLs provide a frame-work for cheaper/faster R&D

- Each concept (e.g., fusion power technology component) has its own feasibility/performance issue as well as material requirement. As such, fusion power technology research (fusion nuclear sciences) cannot be performed in abstract.
- However, there is a large "infant mortality" associated with concepts in low maturity.
- TRL methodology provides a framework for R&D:
  - Ensures an integrated research programs for each concept so that all issues are addressed and all "gaps are filled."
  - Idenitfy decision points in narrowing down the options for each concept to make progress.

### Application to power plant systems highlights early stage of fusion technology development

#### Example application of TRLs to power plant systems

|                                       | TRL |   |   |   |   |   |   |   |   |  |
|---------------------------------------|-----|---|---|---|---|---|---|---|---|--|
|                                       | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |
| Power management                      |     |   |   |   |   |   |   |   |   |  |
| Plasma power distribution             |     |   |   |   |   |   |   |   |   |  |
| Heat and particle flux handling       |     |   |   |   |   |   |   |   |   |  |
| High temperature and power conversion |     |   |   |   |   |   |   |   |   |  |
| Power core fabrication                |     |   |   |   |   |   |   |   |   |  |
| Power core lifetime                   |     |   |   |   |   |   |   |   |   |  |
| Safety and environment                |     |   |   |   |   |   |   |   |   |  |
| Tritium control and confinement       |     |   |   |   |   |   |   |   |   |  |
| Activation product control            |     |   |   |   |   |   |   |   |   |  |
| Radioactive waste management          |     |   |   |   |   |   |   |   |   |  |
| Reliable/stable plant operations      |     |   |   |   |   |   |   |   |   |  |
| Plasma control                        |     |   |   |   |   |   |   |   |   |  |
| Plant integrated control              |     |   |   |   |   |   |   |   |   |  |
| Fuel cycle control                    |     |   |   |   |   |   |   |   |   |  |
| Maintenance                           |     |   |   |   |   |   |   |   |   |  |

| Completed   |
|-------------|
| In Progress |

For Details See ARIES Web site: <u>http://aries.ucsd.edu</u> (TRL Report)

### 

|   | Issue-Specific Description                                                                                                                                                 | Facilities                                                                                                          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1 | System studies to define tradeoffs and requirements on heat flux level, particle flux level, effects on PFC's (temperature, mass transfer).                                | Design studies, basic research                                                                                      |
| 2 | PFC concepts including armor and cooling configuration explored. Critical parameter Power-plant relevant high-temperature ga                                               | Code development applied research<br>as-cooled PFC                                                                  |
| 3 | Data from coupon-scale heat and particle flux experiments; modeling of governing heat and mass transfer processes as demonstration of function of PFC concept.             | Small-scale facilities:<br><i>e.g.</i> , e-beam and plasma simulators                                               |
| 4 | Bench-scale validation of PFC concept through submodule testing in lab<br>environment simulating heat fluxes or particle fluxes at prototypical levels<br>over long times. | Larger-scale facilities for submodule testing,<br>High-temperature + all expected range of<br>conditions            |
| 5 | Integrated module testing of the PFC concept in an environment simulating<br>the integration of heat fluxes and particle fluxes at prototypical levels over<br>long times. | Integrated large facility:<br>Prototypical plasma particle flux+heat flux<br>( <i>e.g.</i> an upgraded DIII-D/JET?) |
| 6 | Integrated testing of the PFC concept subsystem in an environment<br>simulatin<br>levels ov Low-temperature water-cooled PFC                                               | Integrated large facility: Prototypical plasma                                                                      |
| 7 | Prototypic PFC system demonstration in a fusion machine.                                                                                                                   | Fusion machine<br>ITER (w/ prototypic divertor), CTF                                                                |
| 8 | Actual PFC system demonstration qualification in a fusion machine over long operating times.                                                                               | CTF                                                                                                                 |
| 9 | Actual PFC system operation to end-of-life in fusion reactor with prototypical conditions and all interfacing subsystems.                                                  | DEMO                                                                                                                |

### Application to power plant systems highlights early stage of fusion technology development

#### Example application of TRLs to power plant systems

|                                       | TRL |   |   |   |   |   |   |   |   |  |
|---------------------------------------|-----|---|---|---|---|---|---|---|---|--|
|                                       | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |
| Power management                      |     |   |   |   |   |   |   |   |   |  |
| Plasma power distribution             |     |   |   |   |   |   |   |   |   |  |
| Heat and particle flux handling       |     |   |   |   |   |   |   |   |   |  |
| High temperature and power conversion |     |   |   |   |   |   |   |   |   |  |
| Power core fabrication                |     |   |   |   |   |   |   |   |   |  |
| Power core lifetime                   |     |   |   |   |   |   |   |   |   |  |
| Safety and environment                |     |   |   |   |   |   |   |   |   |  |
| Tritium control and confinement       |     |   |   |   |   |   |   |   |   |  |
| Activation product control            |     |   |   |   |   |   |   |   |   |  |
| Radioactive waste management          |     |   |   |   |   |   |   |   |   |  |
| Reliable/stable plant operations      |     |   |   |   |   |   |   |   |   |  |
| Plasma control                        |     |   |   |   |   |   |   |   |   |  |
| Plant integrated control              |     |   |   |   |   |   |   |   |   |  |
| Fuel cycle control                    |     |   |   |   |   |   |   |   |   |  |
| Maintenance                           |     |   |   |   |   |   |   |   |   |  |

| Completed   |
|-------------|
| In Progress |

For Details See ARIES Web site: <u>http://aries.ucsd.edu</u> (TRL Report)

# ITER will provide substantial progress in some areas (plasma, safety)

| ITER                                  | TRL |   |   |   |   |   |   |   |   |
|---------------------------------------|-----|---|---|---|---|---|---|---|---|
|                                       | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Power management                      |     |   |   |   |   |   |   |   |   |
| Plasma power distribution             |     |   |   |   |   |   |   |   |   |
| Heat and particle flux handling       |     |   |   |   |   |   |   |   |   |
| High temperature and power conversion |     |   |   |   |   |   |   |   |   |
| Power core fabrication                |     |   |   |   |   |   |   |   |   |
| Power core lifetime                   |     |   |   |   |   |   |   |   |   |
| Safety and environment                |     |   |   |   |   |   |   |   |   |
| Tritium control and confinement       |     |   |   |   |   |   |   |   |   |
| Activation product control            |     |   |   |   |   |   |   |   |   |
| Radioactive waste management          |     |   |   |   |   |   |   |   |   |
| Reliable/stable plant operations      |     |   |   |   |   |   |   |   |   |
| Plasma control                        |     |   |   |   |   |   |   |   |   |
| Plant integrated control              |     |   |   |   |   |   |   |   |   |
| Fuel cycle control                    |     |   |   |   |   |   |   |   |   |
| Maintenance                           |     |   |   |   |   |   |   |   |   |

Demo plant

Absence of power-plant relevant technologies and limited capabilities severely limits ITER's contributions in many areas.

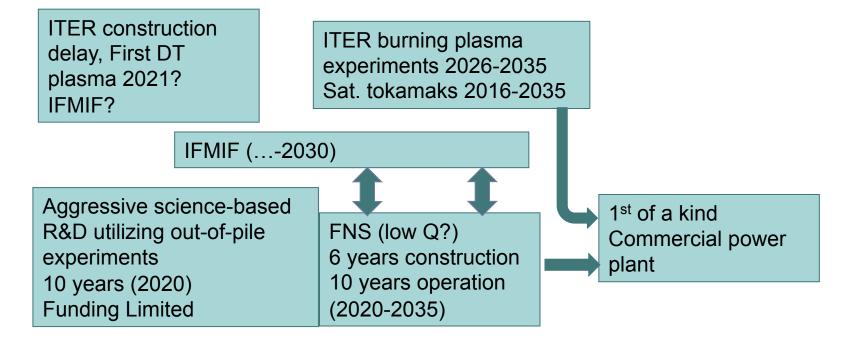
# TRLs provide a frame-work for cheaper/faster R&D

- Each concept (e.g., fusion power technology component) has its own feasibility/performance issue as well as material requirement. As such, fusion power technology research (fusion nuclear sciences) cannot be performed in abstract.
- However, there is a large "infant mortality" associated with concepts in low maturity.
- TRL methodology provides a framework for R&D:
  - Ensures an integrated research programs for each concept so that all issues are addressed and all "gaps are filled" before moving to the next level.
  - Identifies decision points in narrowing down the options for each concept to make progress.
  - Minimizes the risk/cost/and length of each following step.

# We should focus on developing a technical roadmap

A detailed technical Road Map based on TRL methodology

- Includes what needs to be done (both critical and "non-critical")
- Highlights the order they need to be done
- Includes clear mile-stones or check points showing progress
- Provides the justification for and the mission of needed facilities
- A times-less exercise that needs updating


Such a Technical Roadmap provides the technical basis to develop policies and program portfolio.

- > Allows flexibility in implementation scenarios (aggressive or slow)
- Allows multi-year program planning
- Provides a firm basis on cost/benefit analysis
- Provides a mechanism for "coordination" internationally and with plasma physics research.

### Framework for technical roadmap

- Phase 1: Achieve TRL level 4 for all components ("Component and/or bench-scale validation in a laboratory environment)
  - Examples: demonstration of thermo-mechanical response of a blanket and divertor unit-cell, tritium extraction system in lab scale, fundamental material property demonstration and optimization.
- Phase 2: Achieve TRL level 6 for all component ("System/ subsystem model or prototype demonstration in relevant environment.)
  - Examples: demonstration of an integrated full scale blanket/divertor module/sectors in non-nuclear (simulated environment). Demonstration of blanket/divertor unit-cell in fission environment.
- Phase 3: Achieve TRL level 7-8 for all components ("System prototype demonstration in an operational environment")
  - Example: Validation in a fusion nuclear facility. Resolution of synergetic effects.

# A faster fusion development program requires decoupling of fusion technology development from ITER



2035: Decision to field 1<sup>st</sup> commercial plant

Key is aggressive science-based engineering up-front

### In summary: Why? How (not to)?

 $\succ$  World needs a lot of new supply of energy.

- Fusion is NOT the only game in town.
- But, it can fit all criteria for energy growth if we solve the fusion engineering grand challenge!
- All published Fusion Development Paths are based on large and expensive facilities. This cook and look approach is doomed to failure:
  - Requires expensive nuclear facilities with long lead times.
  - Leads to large Risks between steps.
  - Needs extensive run-time in each step.
  - No attention to science & technology requirements before fielding a step.

### In summary: How?, When?

- We need to develop a fusion energy technical roadmap (<u>"Fusion Nuclear Sciences" road-map</u>).
  - Large-scale facility should be only validation facilities.
  - Required science and engineering basis for any large facility should be clearly defined and included in such a Road-map.
  - We need to start implementing such a road-map to show that we are serious (only the "pace" is set by funding).
  - We need to start work-force development.
- Increased funding and emphasis for fusion have always been driven by external factors.
  - We need to be prepared to take advantage of these opportunities.
  - It is possible to field fusion power plant before 2050, but we lay the ground work now!

# • • • Thank you!

### **Evolution of ARIES Tokamak Designs**

|                                     | <u>1st Stability,</u><br><u>Nb<sub>3</sub>Sn Tech.</u> | <u>High-Field</u><br><u>Option</u> | <u>Reverse</u><br>Opt | <u>e Shear</u><br>tion |
|-------------------------------------|--------------------------------------------------------|------------------------------------|-----------------------|------------------------|
|                                     | ARIES-I'                                               | ARIES-I                            | ARIES-RS              | ARIES-AT               |
| Major radius (m)                    | 8.0                                                    | 6.75                               | 5.5                   | 5.2                    |
| $\beta$ ( $\beta_{\rm N}$ )         | 2% (2.9)                                               | 2% (3.0)                           | 5% (4.8)              | 9.2% (5.4)             |
| Peak field (T)                      | 16                                                     | 19                                 | 16                    | 11.5                   |
| Avg. Wall Load (MW/m <sup>2</sup> ) | 1.5                                                    | 2.5                                | 4                     | 3.3                    |
| Current-driver power (MW)           | 237                                                    | 202                                | 81                    | 36                     |
| Recirculating Power Fraction        | 0.29                                                   | 0.28                               | 0.17                  | 0.14                   |
| Thermal efficiency                  | 0.46                                                   | 0.49                               | 0.46                  | 0.59                   |
| Cost of Electricity (c/kWh)         | 10                                                     | 8.2                                | 7.5                   | 5                      |

COE insensitive of power density

COE insensitive of current drive

# An Alternative Approach for building up the FNT research in US

- Address the man-power and limited single-effect data base immediately by starting a program to fund university-based research in FNT (RFP for 3-4 proposals totaling \$1M/y, build to \$3M/year in 3 years).
- Develop a detailed plan for FNT development with a focus on short term goals (5-7 years). Define experimental facilities with clear milestones, detailed research plan, diagnostics development, etc. This is an essential ingredient for selling the FNT research to the rest of fusion community.
- Start planning for user-facilities in national labs for proof-principle and multi-effect test in national labs (e.g., He loop, LiPb loop, heat sources, etc.) to be constructed in 3-4 years time.
- It would be "good" to have the option (in ~7 years) to participate in ITER TBM if the above program is put in place.

### **Utilize Modern Product Development**

- Use modern approaches for to "product development" (e.g., science-based engineering development vs "cook and look")
  - Extensive "out-of-pile" testing to understand fundamental processes
  - Extensive use of simulation techniques to explore many of synergetic effects and define new experiments.
  - Experiment planning such that it highlights multi-physics interaction (instead of traditional approach of testing integrated systems to failure repeatedly).
  - Aiming for <u>validation</u> in a fully integrated system
  - Can we divide what needs to be done into separate "pieces"
    - R&D can be done in parallel (shorter development time)
    - Reduced requirements on the test stand (cheaper/faster!)
    - Issues: 1) Integration Risk, 2) Feasibility/cost?