A Path to a Fusion DEMO after ITER

^{by} T.S. Taylor, V. Chan, A.M. Garofalo

Presented at First Workshop on MFE Development Strategy Beijing, China

January 5-6, 2012

In Addition to What We Learn in ITER, What Else Do We Need to Learn to Build an Electricity Producing DEMO?

ITER Will Make Significant Progress Toward Fusion Energy

- ITER is a joint project of the Europe, Japan, United States, Russia, China, South Korea, and India
 - Mission: "to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes"

ITER will evaluate high gain burning plasmas

- Q > 10, dominant self heating
- Aim at non-inductive steady-state

• ITER will develop power plant technologies

- Large superconducting magnets
- Remote maintenance and handling
- Test breeding blankets
- Tritium fueling/processing systems
- Diagnostics in harsh environment (neutrons)
- High heat flux energy removal systems
- Long pulse heating and current drive systems
- Plasma quench detection/remediation systems
- ELM control

Remaining Gaps to DEMO Have Been Identified — U.S. MFE Community

2007 FESAC Planning Panel

Mow Initiatives Could Address Gaps Legend Major Contribution Significant Contribution Minor Contribution No Important Contribution	G-1 Plasma Predictive capability	G-2 Integrated plasma demonstration	G-3 Nuclear-capable Diagnostics	G-4 Control near limits with minimal power	G-5 Avoidance of Large-scale Off- normal events in tokamaks	G-6 Developments for concepts free of off-normal plasma events	G-7 Reactor capable RF launching structures	G-8 High-Performance Magnets	G-9 Plasma Wall Interactions	G-10 Plasma Facing Components	G-11 Fuel cycle	G-12 Heat removal	G-13 Low activation materials	G-14 Safety	G-15 Maintainability
I-1. Predictive plasma modeling and validation initiative	3	2		2	2	3	1		2						
I-2. ITER - AT extensions	3	3	3	3	3		2		2	2	1	1		1	1
I-3. Integrated advanced physics demonstration (DT)		3	3	3	3	1	3	2	3	3	1	1	1	1	1
I-4. Integrated PWI/PFC experiment (DD)	2	1		1	2		2	1	3	3	1	1		1	1
I-5. Disruption-free experiments	2	1		2	1	3		1	1	1					
I-6. Engineering and materials science modeling and experimental validation initiative							1	3	1	3	2	3	3	2	1
I-7. Materials qualification facility							1			3	2	1	3	3	
I-8. Component development and testing			1				2	1		3	3	3	2	2	2
I-9. Component qualification facility	1	1	2	1	2		3	2	2	3	3	3	3	3	3

2009 Research Needs Workshop

US MFE Leadership -

- ➡ Towards a Fusion Nuclear Science Facility (FNSF)
 - Burning Plasma Dynamics and Control (reliable steady-state)
 - Materials in a Fusion Environment and Harnessing Fusion Power

Research on FNSF, ITER, Superconducting Tokamaks, and Materials Irradiation Facilities Enables DEMO

A Fusion Nuclear Science Facility (FNSF) A Place to Learn How to Make and Use Fusion Energy

- Our Perspective -

• FNSF will

- Show fusion can make its own fuel
- Provide a materials irradiation facility to test/validate fusion materials
- Produce fusion power in steady-state
- Show fusion can produce high grade process heat and electricity
- Enable research on high performance, steady-state, burning plasmas for Demo
- Produce Net Electricity ??
- By operating steady-state with
 - Modest energy gain
 - Operate 30% of a year in 2 week periods
 - Significant neutron fluence
 - (3–6 MW-yr/m², 30–60 dpa)

FNSF-AT (FDF)

Options for the Fusion Nuclear Science Facility

- **FNSF-ST** (larger step to DEMO)
 - Operate steady-state
 - High neutron fluence for component testing
 - Provide a materials irradiation facility to test/validate fusion materials
 - Demonstrate Tritium breeding
 - Show fusion can produce high grade process heat and electricity
- FNSF-AT adds:
 - Produce significant fusion power (100-300 MW)
 - Demonstrate Tritium self-sufficiency
 - Further develop AT physics towards Demo regimes
- **Pilot Plant** (larger step from present program) adds:
 - Generate net electricity
 - Reactor maintenance schemes

What is the Appropriate Size and Scope of Next Step Forward?

- Addresses key identified gaps to DEMO
- Complements ITER
 - Not necessary to duplicate main efforts on ITER
- Can be done now [start design]
 - Define project scope to allow rapid progress in fusion energy development

 Prepare for DEMO construction triggered by Q=10 in ITER (~2030)

Appropriate Size of Next Step Forward?

• FNSF choices lie on continuum between present program and DEMO [Ray Fonck, EPRI 2011]

Appropriate Size of Next Step Forward?

• FNSF choices lie on continuum between present program and DEMO [Ray Fonck, EPRI 2011]

- FNSF-AT can be designed now and operate in parallel with ITER
- Readiness for DEMO construction triggered by Q=10 in ITER (~2030)

AT Physics Enables Nuclear Mission at Modest Size

AT physics enables steady-state burning plasmas with

- >10x ITER neutron fluence
 - High fluence is required for FNSF's nuclear science development objective
- In compact device
 - Moderate size is required to demonstrate TBR>1 using only a moderate quantity of limited supply of tritium fuel

FNSF Must Have Tritium Breeding Ratio > 1 to Build a Supply to Start Up DEMO

- A 1000 MWe DEMO will burn 12 kg Tritium per month
- Tritium inventory available for DEMO at end of ITER 2 and FNSF operation depends strongly on TBR 1 in FNSF
- Pilot Plant option has a larger tritium consumption and increased risk to tritium availability

Available Tritium Inventory (kg)

[M.E. Sawan, TOFE (2010)]

A Fusion Nuclear Science Facility Must Be a Research Device with Maintainable, Flexible, Replaceability

GA FNSF-AT (FDF)

A defining characteristic of device approaches

A Staged Approach to Learn and Improve Nuclear Components, Diagnostics, Operating Scenario

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20 2 [.]	1 22	23
	-	←START UP→ H D DT				FIRST MAIN BLANKET							SECOND MAIN BLANKET				N			1	THIRD MAIN BLANKET		
	Fusion Power (MW)	0	0	12	25	12	5		2	50			25	0		25	50			25	0	Z	100
	P _N /A _{WALL} (MW/m ²)			•	1	¦ 1				2			2			2	2			2			3.2
	Pulse Length (Min)	1		1	0	S	S		S	S			SS	S		S	S			SS	5		SS
	Duty Factor	0.0 [.]	1	0.	04	0.	1		0	.2			0.2	2		0.	3			0.3	3	(0.3
	T Burned/Year (kG)			0.	28	0.	7		2	.8			2.8	8		4.	2			4.2	2		5
	Net Produced/Year (kG)					⊢0.	14		0.	56			0.5	6		0.8	84			0.8	4		1
	Main Blanket	He	e Co	oole Fer	d S riti	Solid Breeder i¢ Steel							Dual Coolant Pb-Li Ferritic Steel)-Li			B	TBN S?	ls		
	TBR					8.0¦	3		1	.2			1.2	2		1.	2			1.2		1	1.2
	Test Blankets					 	1	1,2					3	,4	5	,6				7	,8,	9,1	0
	Accumulated Fluence (MW-yr/m ²)			0.	06	· 			1	.2				,		3.	7					7	.6
Radia	Ν	lυ	cle	ea	r fo	ac	ing	g s	stru	UC	tur	es	d	o r	101	ts	ee	n	າວເ	'e tl	nar	า	

2 MW-yr/m2 (20 dpa) before removal

survival strategy:

A Staged Approach to Learn and Improve Nuclear Components, Diagnostics, Operating Scenario

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 2	22	23
	-	∢ s H	tar D	T UP	°≻ T	FIRST MAIN BLANKET							SECOND MAIN BLANKET							THIRD MAIN BLANKET			۷	
	Fusion Power (MW)	0	0	12	25	¦ 12	5		2	50			25	0		2	50			25	0		40	0
	P _N /A _{WALL} (MW/m ²)			•	1	¦ 1				2			2				2			2			3.	2
	Pulse Length (Min)	1		1	0	S	5		S	S			S	S		S	S			S	S		S	S
	Duty Factor	0.0	1	0.	04	0.1	1		0	.2			0.	2		0	.3			0.	3		0.	3
	T Burned/Year (kG)			0.	28	0.7	7		2	.8			2.	8		4	.2			4.	2		5	;
	Net Produced/Year (kG)					-0. ⁻	14		0.	56			0.5	6		0.	84			0.8	4		1	
	Main Blanket	H	e Co	oole Fei	ed S rriti	Solid Breeder i¢ Steel							Dual Coolant Pb-L Ferritic Steel				o-Li			Best of TB RAFS?				;
	TBR					.0.8			1	.2			1.	2		1.	2			1.2			1.	2
	Test Blankets					I I	1	,2					3	3,4	, 5	5.6				7	,8	9,	,10	
	Accumulated					; <u> </u>								,	+	<u> </u>					-		-	
	Fluence (MW-yr/m ²)			0.	.06	1 			1	.2						3	.7					1	7.6	
Diagnostics development and testing:				l S(TE et	R-I (st	ike ar	e t)					Reduced set				k			DEMO-like set			9	

MFE Workshop, China/January 2012/Taylor

FNSF-AT Can Be Designed Using Proven AT Physics, Can Develop More Advanced Physics Towards DEMO

- 100% non-inductive modes developed on DIII-D bracket FNSF-AT baseline
 - Negative central magnetic shear
 - High bootstrap fraction
 - Near-stationary profiles

Pulse length extension in next few years

FNSF-AT Can Be Designed Using Proven AT Physics, Can Develop More Advanced Physics Towards DEMO

- 100% non-inductive modes developed on DIII-D bracket FNSF-AT baseline
 - Negative central magnetic shear
 - High bootstrap fraction
 - Near-stationary profiles

Pulse length extension in next few years

- Baseline FNSF-AT to meet nuclear science mission
- More advanced scenarios to close physics gaps to DEMO

Can Start FNSF-AT Design Now

- Shovel-ready:
 - Standard coils
 - Standard NBI
 - Standard divertor
 - Proven AT physics
 - Proven materials
- Concept is open to new advances:
 - Demountable superconducting coils
 - Snowflake, SX divertor
 - Negative NBI technology
 - Advanced materials

Soukhanovskii, et al., IAEA 2010

Key features of the FNSF-AT approach:

- FNSF-AT is on direct path towards attractive DEMO
- FNSF-AT plus ITER fill gaps to DEMO
- Ready to design FNSF-AT now

FNSF-AT is a Key Element of a Fast Track Plan to Net Electric DEMO

	16	17	18	19	2020	21	22	23	24	25	26	27	28	29	2030	31	32	33	34	35	36	37	38	39	2040
ITER Key Schedule Elements					• Fir	st Pla	sma					• DT			• Q=	10									
Fusion Nuclear Science Facility (FNSF) and Program																									
Commissioning Operation																									
Helium Cooled Ceramic Breeder Blanket														~											
Show Fusion Can Produce Its Own Fuel																									
Dual Coolant Lead Lithium Blanket																									
Oxide Dispersion Strengthened Ferritic Ste	el Bla	anket													\square									•	
Fusion Nuclear Irradiation and Development	Prog	ram																							
Accelerator Based Lifetime Data		• Ini	tial D	ata	Data	a on C	DS F	erritic	Steel	for DE	EMO (Ĭ													
Triple Ion Beam Facility	• Da	ta on	ODS I	Ferritic	: Steel												Y								
Net Electric DEMO Power Plant (1000 MWe)							• Initia	ate D	esign						• Build		۰B	lanke	t Deci	ision			• Op	eratio	n

ITER, FIRST Plasma ➡ DEMO Design Q=10 in ITER, FNSF Breeds Own Fuel ➡ Demo Construction FNSF Data on Breeding Blankets ➡ Demo Blanket Decision

