Suggestions from FNSF for Consideration by CFETR

Martin Peng (ORNL, UT-Battelle)

Acknowledgement: Gerald Navratil (Columbia U) Mohamed Abdou (UCLA) Jean Paul Allain (Purdue U) Jeff Brooks (Purdue U) Vincent Chan (GA) Ray Fonck (U Wisconsin-Madison) Stan Milora (ORNL) Juergen Rapp (ORNL) Roger Stoller (ORNL)

First Workshop on MFE Development Strategy in China January 5-6, 2012, Beijing, China

FNSF/CFETR provides the environment to develop database for fusion materials in action

- <u>FNSF mission</u>: Provide a continuous fusion nuclear environment of copious neutrons, to develop experimental database on nuclear-nonnuclear coupling phenomena in materials in components for plasma-material interactions, tritium fuel cycle, and power extraction.
- <u>Wide time and size scales of synergistic phenomena</u>: *ps to year, nm to meter, involving all phases of matter.*
- <u>R&D cycle</u>: Test, discover, understand, improve / innovate solutions, and retest, until experimental database for DEMO-capable components are developed.
- Complement ITER objectives and prepare for CFETR in ITER era:
 - Low Q (≤ 3): 0.3 x ITER
 - Neutron flux ≤ 2 *MW/m*²: **3 x**
 - Fluence = 1 MW-yr/m²: **5 x**
 - *t_{pulse}* ≤ 2 *wks:* **1000 x**
 - Duty factor =10%: **3 x**

Example: fusion nuclear-nonnuclear coupling effects involving plasma facing material and tritium retention

- W, a promising Plasma Facing Material
 - Low H permeation / retention
 - Low plasma erosion
 - DEMO-relevant temperatures
- Worldwide R&D: Nano-composites; Nano-structure alloy; PFC designs, etc.
- Nuclear-nonnuclear coupling in PFC:
 - Plasma ion flux induces tritium (T) retention
 - Up 10x @ 2 dpa (W⁴⁺ beam) @ high temp [Wright, NF, 2010]
 - Up 40% @ 0.025 dpa (HFIR neutrons) [Shimada, JNM, 2011] ⇒ additional T trapping sites in material bulk
 - He induced W "fuzz" with He bubbles can trap T

- ⇒ W dust exfoliated by unipolar arcs on fuzz [Tokitani, NF, 2011]
 ⇒ Large surface erosion & T retention in W dust
- Need tests in correct environment to develop solutions.

Example: neutron damage in refractory metals

- Interstitials, vacancies, clusters of those, dislocation loops, voids, dynamics of these
- Hydrogenic retention
- Thermal conductivity (in particular for carbon based materials)
- Chemical composition (e.g. transmutation)
- Micro-structural changes (e.g. swelling)
- Mechanical properties (e.g. DBTT, He embrittlement)

Suggest the need to test neutron irradiated samples up to 10 dpa at least.

Example: adding Be-W chemistry to the mix requires an integrated testing environment

How do high fluxes and thermal loads influence intermixing and alloying, in presence of increasing neutron damage?

R&D and Capabilities required by this mission

<u>Accompanying R&D: to increase Mean Time Between Failure (MTBF)</u> of test components

Development of qualified internal component options, including

- **Test divertors**, blankets, T breeders, FW, NBI, RF launchers, diagnostic systems, TF center post (for ST)
- Components to control plasma dynamics, H&CD, fueling, I&C
- Instrumentation for these

<u>Suggested device Capabilities:</u> to increase duty factor (availability) and fluence, reduce Mean Time to Replace or Repair (MTTR)

- Reliable plasma operation with limited disruption, ELM, and impact
- Remote handling (RH) of modularized test components
- Hot cell facilities and laboratories, pre- and post-test investigation systems and tools.
- Device support structure and systems behind test modules and shielding long facility life and upgradability to CTF mission.

<u>FNSF-ST, assessed to have good potential to provide the</u> <u>facility capability required in progressive stages</u>

- R₀ = 1.3m, A = 1.7
- $H_H \leq 1.25, \, \beta/\beta_N \leq 0.75, \, q_{cyl} \geq 4$
- J_{TF-avg} ≤ 4kA/cm²
- Mid-plane test area $\geq 10m^2$
- Outboard T breeder ~ 50m²

- I-DD: 1xJET, verify plasma operation, PMI/PFC, neutronics, shielding, safety, RH system
- II-DT: 1xJET, verify FNS research capability: PMI/PFC, tritium cycle, power extraction
- III-DT: 2xJET, full FNS research, basis for CTF

IV-DT: 3xJET, "stretch" FNS & CTF research

Stage-Fuel	I-DD	II-DT	III-DT	IV-DT
Current, I _p (MA)	4.2	4.2	6.7	8.4
Plasma pressure (MPa)	0.16	0.16	0.43	0.70
W _L (MW/m ²)	0.005	0.25	1.0	2.0
Fusion gain Q	0.01	0.86	1.7	2.5
Fusion power (MW)	0.2	19	76	152
Tritium burn rate (g/yr)	0	≤105	≤420	≤840
Field, B _T (T)	2.7	2.7	2.9	3.6
Safety factor, q _{cyl}	6.0	6.0	4.1	4.1
Toroidal beta, β_T (%)	4.4	4.4	10.1	10.8
Normal beta, β_N	2.1	2.1	3.3	3.5
Avg density, n _e (10 ²⁰ /m ³)	0.54	0.54	1.1	1.5
Avg ion T _i (keV)	7.7	7.6	10.2	11.8
Avg electron T _e (keV)	4.2	4.3	5.7	7.2
BS current fraction	0.45	0.47	0.50	0.53
NBI H&CD power (MW)	26	22	44	61
NBI energy to core (kV)	120	120	235	330

<u>Steady state plasma operation at JET DT level is simulated</u> using benchmarked TGLF (GA), awaiting ST-Upgrade data

Mid-plane test modules, NBI systems, RF launchers, diagnostics are arranged for ready RH replacement

Mid-plane ports

- Minimize interference during remote handling (RH) operation
- Minimize MTTR for test modules
- Allow parallel operation among test modules and with vertical RH
- Allow flexible use & number of mid-plane ports for test blankets, NBI, RF and diagnostics

Internal components assembly/disassembly concept support structure lifetime dose < 0.1 dpa enables staging

Ready replacements, shielded vacuum weld seals and bi-directional sliding joint are proposed to allow RH

To reduce Mean Time to Replace (MTTR) and achieve 10% Duty Cycle

Structural analysis of optimally designed center-post (Arnie Lumsdaine, 28-3P-19)

Objective: minimize peak Von Mises stress by varying radius and positions of cooling channels

Assumptions:

- Nuclear and Joule heating
- Constant water flow
- Constant Copper thermal & electrical conductivities
- ≥5 mm between channels and to surface

Optimization approaches:

- Sequential quadratic
- Particle swarm
- Broyden, Fletcher, Goldfarb, Shanno algarithm
- VisualDOC linked to ANSYS

Better with 8 roles of channels: For W_L=2MW/m²

- Peak stress reduced to 1/3 to ~100 MPa
- Peak *∆* temp reduced to 60C

Initial

ANSY

Extensive remote handling systems, including hot-cell laboratories, will be required

Remote handling equipment for hot cell laboratories to enable fusion nuclear sciences R&D

To manage the risks, requisite R&D can be defined addressing the device features (dependent on options)

- Solenoid-free plasma start up, using ECW/EBW, Helicity Injection (STs).
- Hot-Ion H-Mode operational scenarios with strong tokamak database (STs & Tokamaks).
- SOL-Divertor with improved configurations to limit heat fluxes ≤10 MW/m², and control fuel and impurities (extended divertor – MAST-U).
- Continuous, disruption-minimized, non-inductive plasma operation in regimes removed from stability boundaries (STs & Tokamaks).
- Continuous PI NBI (JET-like?) & 60 GHz gyrotrons (Tsukuba?)
- Single-turn TF coil center post engineering and fabrication (industry).
- Remote handling (RH) systems and modular internal components, to minimize MTTR to achieve a duty factor of 10% (nuclear R&D facilities).
- RH-enabled maintenance and research hot-cells (nuclear R&D facilities).
- Low dissipation, low voltage, high current, dc power supply with stiff control of current (HTSC based generators?).
- Nuclear grade R&D users' facility infrastructure (national labs).

Accompanying FNS R&D Program to develop, design, instrument, and operate all internal components & options, in concert with integrated research.

FNSF/CFETR with accompanying R&D aim to test, discover, understand, and innovate fusion nuclear science and engineering solutions for DEMO, in progressive stages

Increasing fusion neutron flux \rightarrow

Scenario also relevant to fusion-fission hybrid blanket R&D

A roadmap to complement and support world MFE

