

Proposed Liquid Blanket for CFETR

Presented by Yican Wu

Contributed by FDS Team

Institute of Nuclear Energy Safety Technology Chinese Academy of Sciences (INEST)

School of Nuclear Science and Engineering University of Science and Technology of China (USTC)

www.fds.org.cn

Contents

- □ Introduction
- □ SLL/DLL Demo Blanket Modules
- **DFLL Testing Blanket Module**
- Testing Strategy
- □ Summary

Introduction

CFETR Blanket Concept

□ CFETR blanket module is designated to check and validate relevant fusion DEMO technologies.

- Validation of tritium and energy generation technology
- Validation of relevant analysis tools, codes and database
- Integrative testing for blanket system in different operations
- Material testing under neutron irradiation

Multi-Types-of-Blankets

Multi-Testing-Phases

 Option I : Liquid PbLi-based blanket for tritium breeding and energy production
--- SLL/DLL/DFLL

Option II : Uranium-loaded hybrid blanket for energy production

Option III : Spent fuel-loaded hybrid blanket for energy production and waste transmutation

SLL/DLL Demo Blanket Modules

INEST · USTC SLL/DLL Demo Blanket Module

SLL: He-cooled Quasi-Static Lead Lithium Blanket

- Single Coolant: He-gas (R-T + P-directions)
- **T-Breeder:** Quasi-Static PbLi: (slowly flowing in P-direction, outlet temp.~450 °C)
- **Coating:** to protect the steel structure and to reduce T-permeation and MHD effects.

DLL: He/PbLi Dual-cooled Lead Lithium Blanket

- Coolant 1: He-gas (R-T + P-directions)
- Coolant 2 & T-Breeder: PbLi (quickly flowing in Pdirection, outlet temp.~700 °C)
- Thermal and electric insulators: to avoid RAFM working at high temp. 700 °C

- The basic blanket structure using RAFM steel e.g. the CLAM steel.
- DLL blanket as the main candidate blanket scheme: using Flow channel insert (FCI).
- SLL blanket without FCI as backup scheme: relatively mature material technology, use quasi-static PbLi flow instead of fast moving PbLi in DLL.

DLL Blanket Structure

- Features a big rectangular steel box enclosed by U-shape FW, covers, and BPs. SPs strengthen the structure
- ➤ 3 (rad.) × 6(tor.) rectangular PbLi channel inside breeder zone
- **Dimension :** Outboard: ~ 2 m (Pol.) × 2m (Tor.) × 1.2m (Rad.)

Inboard: ~ 2 m (Pol.) \times 2m (Tor.) \times 0.8m (Rad.)

INEST · **USTC** Neutronics Analysis

INEST · **USTC Thermal Stress Analysis**

When 2 mm ODS thin layer is fabricated on plasma facing FW surface :

- ≻The maximum temperature on first wall amounts to 557 °C, well below the limit of 650 °C for ODS.
- ➤ The maximum Von Mises stress is 333MPa, less than allow. 3Sm of 476MPa at 370 °C.
- ➢ The maximum temperature and stress on FCI amounts to 653 °C and 6 MPa, less than allowable limit of 1000 °C and 190 MPa for SiC material.

INEST · USTC MHD Analysis

Empirical relations:

1. Flow in the long poloidal channel

$$\frac{dp}{dx} = \sigma V B^2 \frac{1}{1 + \frac{\rho_i t_i M}{\rho_i t_i + 2bM\rho}}$$

- 2. Considering 3D geometry effect, which happens at following zones:
- From inlet to LL1 channel;
- From LL1 channel tune to LL2 channel;
- From LL2 channel tune to LL3 channel;
- From LL3 channel to outlet.

$$\Delta p = \zeta \frac{1}{2} \rho v^2$$
, with $\zeta = f(N,M)$

MHD pressure drop has been analyzed with the empirical relations and simulation:

- MHD pressure losses in the poloidal channels are much smaller than the 3D MHD pressure drops, associated with the contraction/expansion.
- > The total pressure drop is ~3MPa.
- > The pumping power is about 0.136MW assuming pumping efficiency of 80%.

Activation Calculation

Management options for activated materials of the DLL functional blanket

Management option	Cooling time 50a	Cooling time 100a	limit
Permanent disposal waste	20%	0	-
Complex recycle material(^a RHR)	31%	0	20mSv/h
Simple recycle material(RHR)	15%	66%	2mSv/h
Simple recycle material(^b HOR)	34%	34%	10 µSv/h
Non-activated Waste	0	0	^c I _c <1
Mass inventory(t)	9678	9678	

- The level of afterheat, dose rate, activity and biological hazard potential for the different regions of DLL breeder blanket are evaluated.
- Code and library: VisualBUS code and multi-group working library FENDL2.1/MG.

DFLL Testing Blanket Module

DFLL Testing Blanket Module

Objectives: DFLL Blanket for test, to demonstrate the technologies of SLL/DLL lead lithium DEMO blankets. Back plates

Flexible design :

- Similar structure and auxiliary systems
- **SLL mode at the earlier stage**
 - PbLi: 1mm/s, 450℃,
 - Without FCI in PbLi channels

DLL mode at the later stage

- PbLi: ~10mm/s, ~700 ℃,
- With FCI in PbLi channels

Cover

INEST · **USTC** Neutronics Performances

FDS

Neutronics calculations were performed with the interface program MCAM converting models between CAD software and neutronics models

Li enrichment	TBR	T production (mg/FPD)	Total nuclear heat (MW)
Natural Li	4.68E-03	19.73	0.42
90% ⁶ Li	1.34E-02	56.42	0.47

DFLL testing blanket module

INEST · USTC Thermal-Mechanical Performances

3-D model of DFLL blanket

Temperature distribution

- The max. temperature of 541°C at the plasma facing side of the FW under the specification limitation of FAFM.
- The max. Von Mises stress of 395MPa (<allow 3Sm of 417MPa for RAFM at 500℃).

INEST · **USTC 3D Dual-flow Fields Analysis**

The hydraulic parameter fields can satisfy the design requirements

INEST · USTC Activity and Decay Heat Inventory

• Activity Inventory

• Decay Heat Inventory

*FDS

INEST · **USTC**

Accident Analysis: Conditions

Reference events	Assessment objective	Enveloped PIEs	Model and conditions	
In-vessel blanket coolant leaks	Small pressurisation of the first confinement (VV) Passive removal of decay heat Limited chemical reactions and hydrogen formation	In-vessel loss of blanket coolant-He In-vessel loss of blanket coolant-PbLi	Model: 2-D radial-poloidal model as Fig.1 Code: ANSYS Source: heat flux on FW,	
In- blanket breeder box coolant leaks	Pressurization of the module and purge gas system. Limited chemical reactions and hydrogen formation Subsequent in-vessel leakage	Loss of Flow -PbLi because of pump seizure Ex-vessel loss of blanket coolant-PbLi In- blanket loss of coolant-He into PbLi	nuclear heat and decay heat Conditions: Decay heat removed only by radiation to frame and the shielding blanket	
Ex-vessel blanket ancillary coolant leaks	Pressurization of the port cell, vault, assembly cask Limited chemical reactions and hydrogen formation	Loss of Flow -He because of circulator seizure Ex-vessel loss of blanket coolant-He Ex-vessel loss of blanket coolant-He	Frame maintaining temperature at 135°C Shielding blanket temperature as Fig.2 Initial blanket temperature. 550 °C.	

Fig.2 Shielding blanket temperature evolution

INEST · USTC Accident Analysis: Results

Accident Cate	gory	VV Pressurization	Vault Pressurization	Temperature Evolution	Decay Heat Removal Capability	Hydrogen Generation	Tritium Release
In-vessel loss of coolant	Plasma disruption	22.4kPa	no	Max.temp.647°C	Decrease to 224°C in 10 days	<2.5 kg	<0.133mg
In-blanket loss of	with detection	No	no	Max.temp.577°C	Decrease to 224°C in 10 days	no	
coolant with dete	with no detection	22.4kPa	no	Max.temp.1395°C	Decrease to 224°C in 10 days	<2.5 kg	<1.723mg
Ex-vessel loss of	with detection	No	1158Pa	Max.temp.577°C	Decrease to 224°C in 10 days	no	
coolant	with no detection	No	1158Pa	Max.temp.1395°C	Decrease to 224°C in 10 days	<2.5 kg	<1.904mg

- The max. VV pressurization is ~22kPa, which is less than the limit of 200kPa.
- The max. vault pressure buildup is ~1.2kPa, which is much lower than the limit of 200kPa.
- The decay heat can be removed by radiation heat transfer.
- The blanket structure temperature is still less than the melting points of RAFM.
- The hydrogen production is less than limit of 2.5 kg.
- The maximum tritium release is about 1.9mg

Testing Strategy

INEST · USTC Testing Strategy of DFLL Blanket

Stage I: Out-of-pile Test (1/3 size)

Stage II: Test in EAST (1/2 size) Stage III: Test in CFETR (full size)

Thermal convection loop Forced convection loop

- R&D on materials (RAFMs, coatings and FCI) and fabrication technology
- Out-of-pile test of 1/3 mockup etc.
- Thermaldynamics and MHD
- Diagnostic and measurement

- EM and thermo-mechanics
- Partially neutronics performances
- Influence on plasma confinement
- Thermaldynamics and MHD
- Diagnostic and measurement

PbLi/He system for test blanket in CFETR

- To confirm results of EM, thermomechanics test in EAST
- To test neutronics, tritium production, integration performan-ces in CFETR

[2] Y. Wu and the FDS Team. Nuclear Fusion, 2007, 47(11): 1533-1539.

Stage I: Out-Of-Pile Small Mockup Test

Objectives:

- Validation of the fabrication route and techniques
- Validation of performances
- Assessment of reliability and safety with regard

Test Items:

- Leak and pressure test.
- MHD and heat removal from FW.
- Mock-up connected to PbLi loop
- Hydrogen control and extraction to simulate tritium extraction
- Irradiation performance

R&D on 1/3 size-reduced mockup

Spallation neutron source at PSI

Out-of-pile integrated test loops

1/3 size-reduced mockup

Stage II: Test in EAST Tokamak

(1/2 Size-reduced Test Blanket)

Objectives:

- Preliminary validation of design codes and data
- Checking of feasibility & availability of auxiliary system
- FM Influence on Plasma

Test Blanket Test in EAST:

- ElectroMagnetic performance (MHD pressure drop, influence on plasma)
- Thermo-mechanics/Thermofluid dynamics performances
- Partially neutronics performance (DD neutrons), Diagnostic instruments

Device	EAST	CFETR
Phase	DD	DT
R (m)	1.95	5.5
A (m)	0.46	1.6
Bt (T)	3.5-4.0	5.3
Neutron rate (n/s)	10 ¹⁵ ~10 ¹⁷	
Avg.HF(MW/m ²)	0.1~0.2	
Port Size	0.97m x 0.53m	
Pulse (sec)	~1000	

INEST · USTC Stage III Test in CFETR

(Full size Test Blanket)

Summary: Proposed Liquid Blanket Module for CFETR

Testing Blanket Module

- ◆ DFLL-Test Blanket: He/PbLi Dual-Fuctional lead lithium Test Blanket Module
- To demonstrate the technologies of SLL/DLL lead lithium DEMO blanket Module.

DEMO Blanket Modules

- ◆ SLL: He-cooled Quasi-Static Lead Lithium Blanket
- **Single Coolant:** He-gas (R-T + P-directions)
- **T-Breeder:** Quasi-Static PbLi: (outlet temp.~450 °C)
- ◆ DLL: He/PbLi Dual-cooled Lead Lithium Blanket
- Coolant 1: He-gas (R-T + P-directions)
- Coolant 2 & T-Breeder: PbLi (outlet temp.~700 °C)

The End

Thanks for your attention !

Website: <u>www.fds.org.cn</u> E-mail: contact@fds.org.cn