Prospects and Risk Tradeoffs for Steady-State MFE

M.C. Zarnstorff Princeton Plasma Physics Laboratory

MFE Roadmapping Workshop 9 September 2011

Outline

Introduction

Plasma Issues for steady-state DEMOs

- Steady-state tokamak
- Steady-state stellarators
- Summary

Lots of Challenges for a Fusion Energy System

- In US: ReNeW, FESAC studies
- Separate talks here

 Divertor exhaust loads, PFCs
 Materials & technology
 Current drive
- ITER issues continue: ELMs & Disruptions
 - Worse in DEMO: more energy, higher forces
 - PFC armor must be much thinner to achieve TBR > 1 most reactor designs have 1-3 mm of W armor ITER has 1cm Be/W plus 2.5cm of Cu (ΔTBR 12%)
 Disruptions and ELMs must be reliably eliminated

Burning tokamak plasmas: Very non-linear

- Fusion heating
- Turbulent transport
- MHD kinetic interactions
- Evolution of current profile interaction with transport

ala Politzer, 2005

- Need to actively control burning plasma to achieve steady state
- High-Q implies only have weak actuators.

Steady-state tokamak: how much bootstrap?

- Need to maintain current / q-profile without inductive current
- Highest Q with maximum selfgenerated bootstrap current
- Large bootstrap current makes hollow profile, changes transport and plasma stability.

Three Advanced Tokamak strategies: zero shear weak reversed shear strong reversed shear

Substantial advances in Steady-State Tokamak Regimes

- Lots of significant work by AUG, DIII-D, JET, JT-60U in part to prepare for ITER
- 100% Non-inductive plasmas achieved in all three strategies
 ~ stationary for at least ~3 relaxation times for the current profile
- DIIID : extensive shape optimization. DN, κ ~1.9, δ ~0.6, ζ ~ -0.25
- JT-60U : extended to almost 30 sec.
- DIII-D, JT-60U, NSTX : above the no-wall limit

Will use G = β_N H / q_{95}^2 as a dimensionless metric for nT $\tau \sim Q$ using either H₈₉ = τ_E / ITER-89P or H₉₈ = τ_E / ITER-98(y,2)

Similar Landscape on All Experiments

- JT-60U Hybrid sustained for 16 τ_R
- All three regimes sustained to ~ 3 τ_R or longer, stationary.
- Bootstrap current fractions differ systematically

Hybrid $f_{boot} < 0.5$; Weak reversal $f_{boot} \sim 0.6$; Strong rev. $f_{boot} > 0.7$

High Bootstrap Fraction More Unstable

- Higher bootstrap fraction => strong shear reversal
- Strong shear reversal => lower transport : ITB (internal transport barrier)
- ITB => pressure gradient driven flow shear & shift => stronger ITB
- Peaked profile / sharp gradient drives internal kink: Reduced β limit

Limiting process similar on All Experiments

- High bootstrap, strong reversed shear: β_N limited by strong ITBs produces extremely fast disruptions, often without precursors
- Weak reversed shear is a strategy to avoid ITBs limited by when they occur
- Hybrid and Weak shear reversal limited by external kinks / Wall modes
- Current experiments use beta-feedback of heating power to control all three regimes
 - + makes bootstrap evolution ~reproducible
 - + help control occurrence of non-linear ITB generation
 - Not prototypical for burning plasmas.
 Need to assess expected burn control strategies.
 May have slower reaction => impact performance limits.

Reactor Designs are Not Consistent with Sustained AT Characteristics

	Hybrid	Weak Rever	Strong Rever	Slim CS	CREST	EU AB	EU C	Aries- AT
		DIII-D	JT-60		Weak rev			Strong rev.
q ₉₅	3.3	6.3	8.3	5.4	4.3	3.0	4.3	3.2
H ₉₈	1.5	1.5	1.8	1.3	1.3	1.2	1.3	1.7
β _N	2.8	3.7	1.7	<mark>4.3</mark>	5.5	3.5	4	5.4
G ₉₈	0.38	0.14	0.044	0.19	0.39	0.47	0.28	0.90
f _{bootstrap}	~0.4	0.65	0.75	0.77	0.83	0.45	0.63	0.91
n / n _{GW}	0.4	0.5		0.98	1.3	1.2	1.5	0.9

• Need to iterate designs using more realistic parameters

NSTX nearly stationary 'hybrid'-like scenarios Close to FNSF goals, but still inductively sustained.

RWM Stabilization by Fast Ions

- Fast ion precession can stabilize RWMs, allowing operation above the nowall limit even at low rotation. [Hu et al.]
- This has been observed experimentally on DIII-D, JT-60U, and NSTX.
- Analysis indicates that this may provide RWM stabilization in ITER, without external rotation drive [Sabbagh].
- Experiments on DIII-D and NSTX also observe RWMs being triggered by fast-ion loss from fishbone-like instabilities, forcing the plasma below the no-wall β-limit.
- In future DEMOs, fast ion instabilities and Alfvenic instabilities may cause alpha-transport, and similarly destabilize the RWM. Need to keep β_{α} low, and assess fast-ion stability and transport.

Stellarators: Eliminate or Weaken Non-linearity

- Equilibrium maintained by coils, not current drive.
 Simple steady-state.
- Equilibrium maintained without plasma.
- Not limited by MHD instabilities. No need to control profiles.
- Greatly simplify plasma control needs.

ala Politzer, 2005

Stellarator Operating Range is much larger than for Tokamaks

Density limit ~5 X equivalent
 Greenwald density limit (from tokamaks).

• LHD
$$n_{e0} = 10^{21} \text{ m}^{-3} \text{ at } \text{B} = 2.7 \text{ T}$$

Can operate with q>2, even q>1

No disruptions.
 Limits are not due to MHD instabilities.

- High density favorable:
 - Lower plasma edge temperature, Eases edge design
 - Reduces energetic particle instability drive

High β Steady State, without Disruptions

- β =5.4% (LHD)
 and β=3.4% (W 7-AS)
 without <u>any</u> disruptions.
- Soft limit is observed, due to saturation in confinement.

- Highest β ~ twice ideal stability threshold. In W7AS: no MHD activity. In LHD: saturated MHD observed.
- What sets β-limit?? May be due to equilibrium limits.
 Can be improved by design.

Stellarator Energy Confinement Similar to Tokamaks

- ISS-04 confinement scaling derived from Stellarator L-mode data base. Gyro-Bohm like.
- Tokamak H-mode data plotted against stellarator scaling relation $\tau_{\rm E}\text{-}\text{ISS04})$
- Stellarator τ_{E} data similar to tokamak ELMy H-mode
- T_i = 6.8 keV without impurity accumulation (LHD)

Low Ripple Gives Good Confinement

- Global confinement scaling for stellarators (ISS04v3) found strong dependence on ripple magnitude. Must involve anomalous transport also.
- H(ISS04) up to 1.5 obtained at low ripple
- H(ISS04) = 1.1 adequate for reactor, simultaneous with high beta.

3D Configurations: Need to Optimize for Good Confinement

3D: No symmetry \Rightarrow no conserved canonical momenta \Rightarrow lost orbits \Rightarrow rotation is strongly damped

- 'Quasi-symmetry'
 - (Boozer, 1983) Orbits & neoclassical transport depend on variation of IBI within flux surface, not the vector components of B !
 - If IBI is symmetric in flux coordinates, get confined orbits like tokamak
 - Can be perfected on one surface in toridal system; degrades mildly
 - ⇒ Neoclassical transport very similar to tokamaks (theoretically), undamped rotation
- Quasi-axisymmetry, Quasi-helical symmetry, Quasi-poloidal symmetry
 Differ in drift orbit widths and other physics characteristics

W 7-X Optimized for High-β, Quasi-Isodynamic

- 5 periods, R/(a)=11, R=5.4 m
 Superconducting coils
- Quasi-isodynamic: neoclassical transport minimized by minimizing drift-orbit widths. An approximation to quasi-poloidal symm.

- Bootstrap current & Pfirsch-Schluter current minimized to minimize change in equilibrium with increasing β. This also implies strong rotation damping (including zonal flows)
- MHD Stable for $\beta = 5\%$
- Designed for good vacuum flux surfaces. Current minimization keeps good surfaces to β =5%

NCSX: Optimized Design for High-β, Quasi-Axisymmetry

- 3 periods, R/(a)=4.4, (κ)~1.8 , (δ)~1
- Quasi-axisymmetric: tokamak with 3D shaping ripple-induced thermal transport insignificant. Build on ITER results.
- Passively stable at β=4.1% to kink, ballooning, vertical, Mercier, neoclassical-tearing modes (steady-state AT β limit ~ 2.7% without feedback)
- Stable for at least $\beta > 6.5\%$ by adjusting coil currents
- Designed to keep ~perfect flux surfaces to β =4.1% 2-fluid calculations indicate it may continue to β > 7%
- Passive disruption stability: equilibrium maintained even with total loss of β or I_P

G.-Y. Fu L.P. Ku H. Neilson A. Reiman M. Zarnstorff

Issues for Stellarators

US Assessment (ReNeW & FESAC):

- Simplify coil designs
 Simplify maintenance strategies for blanket
- 2. Demonstrate integrated high performance: high- β , low collisionality
- 3. Confinement predictability
- 4. Effective 3D divertor design

Compactness: How important

- Main interest in compactness is to reduce capital costs, increase mass-power density, improve competitiveness.
 - Non-trivial, given ITER's costs and budgeting challenges
- Clearly, compactness aggravates some engineering challenges
- Most design studies show shallow minimum & hard constraints (e.g. blanket thickness).
- In energy system, drives minimum power size.

Personal perspective:

 Any design will compromise between cost, engineering risk, perceived attractiveness to customer. Need to assess variations, maintain contingency. Compactness is only one of the characteristics.

Summary

- Substantial advances in last 10 yrs. in understanding steadystate tokamaks and stellarators.
- AT experiments have achieved 100% non-inductive sustainment in 3 q-profiles, with varying amounts of bootstrap current. Very similar characteristics across all experiments.
- AT steady-state performance levels are lower than assumed in reactor designs. Reactor design groups should assess realistic performance, combined with realistic current drive efficiencies.
- Need to assess performance limits of control strategies that will be used for burning plasmas.

Summary (2)

- Stellarators simplify physics non-linearities. Plasma equilibrium determined by coils.
- Simplify & reduce auxiliary technology needs
 - Don't require steady-state neutral beams and RFlaunchers in burning environment
- Steady-state, high-beta plasmas already demonstrated.
 Minimal recirculating power required.
- Robust confinement: no disruptions, can avoid edge instabilities (ELMs)
- Need to simplify coil engineering, maintainability.
- Need to demonstrate integrated performance, incl. divertor. How to best build on ITER?