Some Physics Issues related to future

Chinese Experimental Fusion Reactor

Qingquan Yu

30.12.2011

1. Introduction

*ITER is planed to begin operation in 2019/2020.

to obtain Q=10 in D-T experiments in 2027.

*The Chinese fusion reactor is expected to have a major radius ~5 meters, smaller than ITER, possibly starting construction in 2020.

*What is the key difference between our reactor and ITER?

*If one believes that ITER plasma will be well behaved, one can focus on the application of a fusion reactor.

e.g. follow ITER design but with different blanket module. *However, ITER faces risks and uncertainties. *In addition, some issues relevant for power plant have not been fully considered in ITER, e.g. steady operation.

- * Only the possible physics-related issues are mentioned below.
- * Purpose: to call for discussions;

for optimizing reactor design based on ITER design and recent research development.

2. Possible physics-related risks on ITER

2.1 Disruption

- * Due to low plasma rotation frequency and strong toroidal magnetic field, mode locking and disruptions in ITER are expected to be more frequent.
- * The disruption prediction and Disruption Mitigation System (DMS) might not work well on ITER, resulting in frequent shutdowns to replace invessel components
- * or they work well, but the use of DMS might be excessive.

***Possible solution**

***ECRH/ECCD** for disruption avoidance?

*to find a possible way to drive plasma rotation?

2.2 ELM mitigation

- * RMP coils could have no planned mitigation effect in ITER,
- * or it works, but the required RMP amplitude is too large, causing locked mode.
- * Pellet pace-making could be ineffective in ITER,
- * or cause excessive fuelling and degrade confinement.
- * Studies are still going on to understand this issue.
- * It is already clear that ELM coil design based on vacuum assumption is not right.

2.3 Compatibility of Core and Radiative Divertor

- * Predicted narrow power deposition on divertor plate, requires plasma detachment from the divertor.
- * In addition, there could be thermal transients.
- * Excessive core impurities due to seeding for radiative divertor. limiting H-factor, Q value and pulse length.

Possible measures:

- * Impurities may be limited by high power core electron heating.
- * Change divertor design to prepare for narrow power deposition?

2.4 Steady state operation

- * Steady state operation is favorable for fusion power plant.
- * requires high bootstrap current fraction and non-inductive current drive.
- * The current drive efficiency is lower for a higher plasma density, but high plasma density is required for a reactor.
- * For higher bootstrap current fraction, the (neoclassical) tearing mode is more unstable and could lead to disruptions.
- * **Possible measures?**

High RF power for both current drive and stability control?

2.5 Operational mode

* Which operational mode should have the priority?

Standard H-mode?

Hybrid (improved) H-mode?

Reversed magnetic shear?

* If steady state operation is the major purpose, maybe the reversed magnetic shear configuration should have the priority.

* How to maintain the stability of reversed shear configuration?

2.6 Other issues

- * Uncertainty in confinement in ITER.
- * H-mode Power Threshold?
- * density limit/peaking?
- * Heating/Current drive system selection?
- * In-vessel components?
- * Fuel cycle

...

*

Summary

- * Questions are there, but clear answers to them are not there yet.
- * Conceptual design studies could let us know more clearly about the problems and possible solutions.

-to lead to a reasonable reactor design

- * In addition, the design studies would be helpful to
 - Guide experiment plan of our existing tokamaks.
 - -Guide our investment in fusion research area.

Thank you for your attention