

An approach towards different design options for

DEMO:

Pulsed (conservative) versus steady-state (advanced) tokamak

w.biel@fz-juelich.de

Wolfgang Biel | Institute of Energy and Climate Research | Forschungszentrum Jülich GmbH | Germany

Development of 2 DEMO tokamak "working models" for the German DEMO working group

- DEMO working models to serve as reference basis for the 13 sub-groups
- 2 tokamaks (pulsed vs. steady state) and 1 stellarator (see talk by C Beidler)
- Tokamak target requirements:
 - 1) "Conventional" pulsed DEMO tokamak (conservative, low complexity)
 - output power 1 GW_{el}
 - \rightarrow accessing the economic parameter range for a power plant
 - pulse duration many hours
 - \rightarrow minimising impact of cyclic loads
 - low or zero HCD level
 - → minimising recirculating power
 - → minimising development needs for HCD system
 - physics and technology as of today
 - 2) "Advanced" steady-state DEMO tokamak
 - output power 1 GW_{el}
 - steady state via BS and HCD
 - moderate extrapolation in physics and technology

0-D tokamak reactor model

Main elements:

• Fusion power calculated using the IBP98(y,2) confinement scaling

 $\tau_E / s = 0.173 H_H I_M^{0.93} R_0^{1.39} a^{0.58} \kappa^{0.78} n_{20}^{0.41} B_0^{0.15} P_M^{-0.69}$

- Pulse duration (OH and non-inductive)
- Heat + particle exhaust model to adjust divertor power and core radiation
- simple CoE estimation

$$oE \sim V_{tokamak} / P_{electr.}$$

Benchmarking: Fair agreement with

- Model by H. Zohm
- DEMO PPPT 2011 benchmark case (D. Ward, J. Johner)
- European PPCS-A study (D. Maisonnier NF 2007)

In this analysis, only the quantities marked in red are used as variables.

 Different sets of these parameters are chosen for the pulsed + steady-state case

Input data		Output data
R ₀ / m		
a/m		
b = 1.8 m		c / m
κ,δ		f _{shape}
B _{max} = 13 T		B ₀ / T
q ₉₅		I _p / MA
$N_{GW} = n/n_{GW}$		n _e
H _{H(IBP89 y,2)}		$ au_{E}$
$\tau_{\alpha}^{*}/\tau_{E} = 5$		C _{He}
$c_{\rm N} = 0.01$		C _{Ar}
$C_W = 5 \times 10^{-5}$		Z _{eff}
(P _{ext} / MW)	(or)	(P _{ext} / MW)
$\eta_{therm} = 0.35$		P _{therm} / MW
$\eta_{HCD} = 0.4$		P _{electr} / MW
		P_{α} / MW
		P _{Div} / MW
		P _{Core,rad} / MW
		T _e =T _i / keV
		Q
		β _N , β _{pol}
		t _{pulse} / h
		q _{Neutron} / MW/m ²

Boundary conditions and assumptions

Power and particle exhaust

Power balance:

$$P_{Heat} = P_{a} + P_{ext} + P_{OH}$$

$$= P_{Sync} + P_{ImpRad,core} + P_{Rad,edge} + P_{Div}$$

$$P_{Sep} = P_{Rad,edge} + P_{Div}$$

$$> 1.3P_{LH} \approx 2.2 n_{20}^{0.78} B_{0}^{0.77} a^{0.98} R_{0}^{100} \text{ (Y. R. Martin)}$$

$$P_{Rad,edge} \approx P_{Matthews} - P_{ImpRad,core}$$

$$P_{Matthews} = 2.08 (Z_{eff} - 1)(1 + \kappa) a R_{0} n_{20}^{2} \text{ (Argon)}$$
Assume that 2/3 of the divertor power is radiated:
$$P_{Div} \approx 3 \times 1.5 q_{max} F_{x} \lambda_{q} 2 \pi R_{0}$$

$$A_{q} = 0.0008 \times R_{0}$$

$$F_{x} = 10$$

$$q_{max} = 5 MW / m^{2}$$

$$P_{article} exhaust: \frac{\tau_{a}^{*}}{\tau_{E}} = 5$$

$$P_{article} exhaust: \frac{\tau_{a}^{*}}{\tau_{E}} = 5$$

Heating and current drive / pulse duration

Pulse duration:

$$t_{Pulse} \approx \frac{\Phi_{CS} + \Phi_{BV} - \Phi_{ignition} - \left(\varepsilon_{ejima} \,\mu_0 R_0 + L_{plasma}\right) I_{Plasma}}{R_{Plasma} \, I_{Plasma} \left(1 - f_{BS} - f_{CD}\right)}$$

Bootstrap current:

$$f_{BS} = 0.7 \sqrt{\frac{1}{A}} \beta_{pol}$$

Current drive:

$$\frac{I_{CD}[MA]}{P_{Ext}[MW]} = \gamma_{CD}(T) \cdot \frac{1}{n_{20} \cdot R_0} \quad \text{using} \quad \gamma_{CD}(T) = 0.4 \frac{T/keV}{15} \quad \text{and} \quad \eta_{CD} = 0.4$$
(aiming for ECRH)

Plant power balance:

$$P_{el} = \eta_{th} \left(1.18P_{Fus} + P_{HCD} + P_{OH} \right)$$
 using $\eta_{th} = 0.35$ (conservative, leaving room for He cooling power)

Radiative H mode: Plasma scenario for the "conservative" pulsed DEMO tokamak

Experimental results from JET and JT-60-U:

Pulsed tokamak: "Cost of Electricity (CoE)"

Pulsed tokamak: Plasma pulse duration

Parameter range for pulsed tokamak DEMO model ($P_{el} = 1 \text{ GW}, R_0/a = 5, \kappa = 1.72, \delta = 0.36, P_{ext} = 0$)

Н _н	n/n _{GW}	q ₉₅	a /m	R ₀ /m	CoE	q _{neutron} /MW/m²	P _{RadCore} /P _{Heat}	T _{pulse} /h
0.9	1.1	3.0	2.25	11.25	5.9	1.87	0.56	5.3
0.85	1.0	3.2	2.62	13.10	8.1	1.38	0.56	9.0

Approach for pulsed tokamak DEMO

- choose large aspect ratio to allow for large CS coil and long pulse duration
- operate near the maximum possible n/n_{GW} and plasma current (low q₉₅)
- External heating essential only for start-up

Main properties

- minor radius a ~ 2.2 m .. 2.6 m, 10% .. 30% larger than ITER
- pulse duration several hours, inductive drive
- moderate plasma core radiation, q_{max} = 5 MW/m²

Steady state tokamak solutions: N_{GW} = 1.1, P_{electr,net} = 1 GW, R₀/a = 3, κ = 1.8, δ = 0.4

Parameter range for steady-state tokamak DEMO model ($P_{el} = 1$ GW, $R_0/a = 3$, $\kappa = 1.8$, $\delta = 0.4$)

Н _н	n/n _{GW}	q ₉₅	a /m	R ₀ /m	CoE	q _{neutron} /MW/m ²	P _{RadCore} /P _{Heat}	T _{pulse} /h
1.6	1.2	4.0	3.2	9.6	7.1	2.3	0.70	∞
1.2	1.1	3.0	3.16	9.5	6.9	3.07	0.68	∞

Optimisation strategy for steady-state tokamak

- Two different routes:
 - either advanced tokamak with $q_{95} = 4$ (q > 2 everywhere) and very high confinement factor H_H (preferrable due to lower HCD power needed)
 - otherwise more conventional H mode tokamak with $q_{95} = 3$ and confinement-optimisation (H_H = 1.2) similar to the PPCS model A / AB

Main properties

- minor radius a > 3 m, > 50% larger than ITER
- full steady-state operation, current drive with P_{HCD} > 200 MW
- high plasma core radiation, $q_{max} = 5 \text{ MW/m}^2$

Comparison of the two reference cases

Issue	Pulsed	Steady-state
H _H / q ₉₅	0.9 / 3.0	1.6 / 4.0
CoE (rel. units)	1	1.2 + cw HCD system
FW lifetime (75dpa) / y	4.0	3.2
C _{Ar}	0.3%	1.0% (\rightarrow FW sputtering)
Need for HCD	Start-up + control	> 200 MW steady-state
Need for profile control	No	Yes
Load cycling	Medium	low

Issues for further elaboration:

- Plasma scenario
- First wall lifetime
- Disruptions
- Plasma control
- Plant availability

Issues (1): Plasma scenarios

Pulsed tokamak with large aspect ratio R_0/a and radiative H mode

• plasma scenario with high radiation fraction, high density and small ELMs exists

> needs further optimisation and testing on ITER, JT60SA, ...

- possible issue with LH threshold (?), ELM size may be still to large (?)
- parameters are not fully compatible with settings chosen for for IBP98(y,2) database
 - > develop new database and scaling law for radiative H mode
 - > clarify density scaling, beta scaling, radiation scaling,

Steady-state tokamak with advanced scenario / improved H mode

real steady-state performance still to be demonstrated

> experiments on ITER, JT60SA, ...

• Required HCD level, radiation level and confinement scaling to be explored

> optimisation needed to make this approach attractive

- Scenario depends on feasibility of economic current drive and control systems
- \rightarrow DEMO physics basis to be developed

Issues (2): First wall lifetime (P3, T2, T3 working groups)

Issue	Pulsed	Steady-state
H _H / q ₉₅	0.9 / 3.0	1.6 / 4.0
FW lifetime (75dpa) / y	4.0	3.2
C _{Ar}	0.3%	1.0% (\rightarrow FW sputtering)

Limitation of power flux density to the target plates ($q_{max} = 5 \text{ MW/m}^2$) via radiation

- \rightarrow enhanced (core and edge) radiation
- \rightarrow limitation of P_{sep} = P_{Heat} P_{RadCore}
- \rightarrow moderate power density (\rightarrow larger machine volume for a given P_{el})

First wall sputtering: ~ main chamber 0.1 mm / y (Brooks), in divertor probably more

Observations:

- For the case of a "traditional divertor", the pulsed tokamak with radiative H mode may have lower neutron damage rate, lower sputtering by impurities
- In comparison, the steady-state tokamak seems less attractive unless there would be a different approach for power handling
- However, load cycling issues to be quantified

Issues (3): Disruptions (P4 working group)

Energy released in a disruption on DEMO

(assuming operation near density limit and beta limit):

- Current quench: $W_{ind} \sim a^3 B^2 / Aq_{95}^2 \sim 1 \text{ GJ} (several 10 \text{ ms})$
- Thermal quench: $W_{th} \sim a^3 B^2/q_{95} \sim 1 \text{ GJ}$ (a few ms)

An unmitigated disruption would release the stored energy W_{th} to the divertor plates \rightarrow factor 30 .. 100 about damage threshold (M. Lehnen)

Disruption mitigation aiming at uniform spread of thermal energy via core radiation

• Since $S_{Wall} \sim 1500 \dots 3000 \text{ m}^2$, the mean energy density is ~ 0.5 MJ/m²

High risk of wall damage for each disruption with non-uniform energy release

Since W/S ~ a, the damage risk increases with machine dimensions

Issues (4): Plasma control (P5 working group)

Diagnostics and actuators on a fusion reactor will be quite limited

- limited access and performance (large coverage of breeding blanket needed)
- limited lifetime (diagnostic+control components mainly behind the blanket)

Pulsed tokamak with large aspect ratio R₀/a and radiative H mode

- control of global / averaged plasma quantities:
 - q₉₅, <n>/n_{GW}, beta, P_{rad}, P_{fus}, ...
- plasma position and shape, heat fluxes, wall temperatures
- instabilities (disruption avoidance/mitigation)

Steady-state tokamak with / advanced scenario

- additionally control of local plasma quantities / plasma profiles is needed:
 - n(r), T(r), j(r), ...
- Feasibility of control system may limit the achievable complexity of the DEMO plasma scenario

Issues (5): Availability (cross-topic)

5 different types of downtimes / load variations to be distinguished

- Large shutdown for 1st wall replacement (intervals 3-4 y)
- Scheduled maintenance (e.g. removal of dust or stored tritium)
- unscheduled maintenance (repair of damage)
- power variations requested due to economic reasons (off-peak periods)
- break between 2 pulses (only pulsed tokamak)

Pulsed tokamak (A = 5): Estimation of dwell time between 2 pulses

- plasma termination (current ramp-down) ~ a few minutes
- Re-charging of CS coil ($r_{CS} = 6 ... 7 m$) ~ 20 ... 30 min (P = 100 MW)
- Pump-down time estimated to
- plasma startup
- thermal time constant of 1st wall
- minimum total break between 2 pulses ~ 1 hour
- AC operation under consideration (2 divertors) ۲
- coverage of break by thermal storage to be considered

- ~ 20 min (C. Day)
 - ~ a few minutes
- ~ several minutes

Summary and conclusions

- 2 DEMO tokamak working models (P_{el} = 1 GW) are being discussed in the German DEMO WG
 - Pulsed large aspect ratio tokamak (t_{pulse} ~ several hours)
 - steady-state (advanced) tokamak (P_{HCD} > 200 MW)
- Main issues:
 - plasma scenarios to be further developed (\rightarrow "DEMO physics basis")
 - 1st wall lifetime
 - *limited by sputtering and neutron embrittlement (< a few years)*
 - Disruptions
 - are an essential problem for any DEMO tokamak
 - plasma control likely to be a critical issue, in particular for
 - disruption avoidance
 - 1st wall protection
 - profile control
 - Availability
 - not too different for both DEMO tokamak models, if load cycling is not a problem