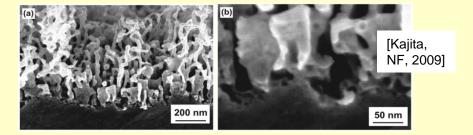
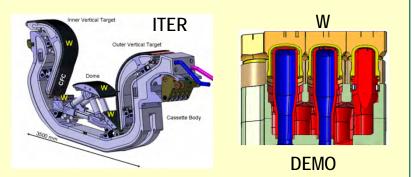

Fusion Nuclear Science Facility (FNSF) – Motivation, Role, Required Capabilities

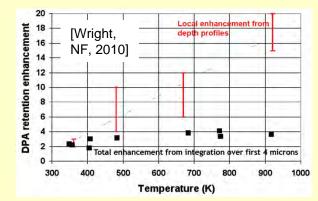
YK Martin Peng, with contributions from

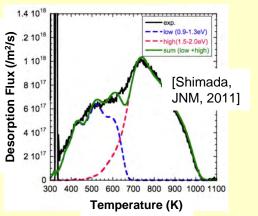
JM Park, JM Canik, SJ Diem, SL Milora, AC Sontag, A Lumsdaine, M Murakami, Y Katoh, TW Burgess, MJ Cole, K Korsah, BD Patton, JC Wagner, GL Yoder (ORNL); PJ Fogarty (IDC); M. Sawan (U Wisc.);

International Workshop on MFE Roadmapping in the ITER Era September 7-10, 2011 Princeton, New Jersey, USA

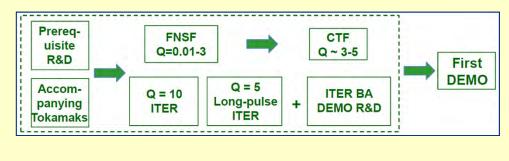





Example: fusion nuclear-nonnuclear coupling effects involving plasma facing material and tritium retention


- W, a promising Plasma Facing Material
 - Low H permeation / retention
 - Low plasma erosion
 - DEMO-relevant temperatures
- Worldwide R&D: Nano-composites; Nano-structure alloy; PFC designs, etc.
- Nuclear-nonnuclear coupling in PFC:
 - Plasma ion flux induces T retention
 - Up 10x @ 2 dpa (W⁴⁺ beam) @ high temp
 - Up 40% @ 0.025 dpa (HFIR neutrons)
 - \Rightarrow additional T trapping sites near surface
 - He induced "fuzz" with He bubbles can trap T
 - \Rightarrow retention in W dust created by ELMs?

A FNSF* roadmap to complement and support world DEMO


1. Fusion Plasma Dynamics al	nd Control:			
ITER: Construction	\diamond	First Plasma	$_{\diamondsuit}$ 500MW DT Burn	n
<u>U.S. Leadership Areas</u> : Measuren	nent, Theory& Predictive Mo	deling, FSP, Control, Plasma	a-Wall Interactions	Phase-II (3000s burn)
High Performance Internation	nal Collaboration – K-STAR	(Korea); EAST (China), JT60	SA(Japan)	
<u>& Steady State</u> : Configura	tion Optimization – DIII-D &	STX; 3D fields; LHD (Japar); W7-X (Germany)	
<u>2. Materials in Fusion Environ</u> Plasma/Surface Inter	<u>ment:</u> actions, Nuclear Effects	on Materials and Struct	ures, Tritium Breeding a	nd Power Extraction
Fusion Nuclear Science Program	: single & multiple effects, r	uclear/non-nuclear coupling	g, modeling/simulation, join	tly with BES, NE, NNSA
Plasma-Material Interactions	PMTS Operation	$\stackrel{\bullet}{\Diamond}$ Irradiated and hazar	dous Material Samples	
Nuclear Effects: HFIR		♦ Component:150 dpa	3	
<u>FNSF</u> : 🔗 Mission	🗘 💍 Design		\diamond Operation (DOE Scien	ce 20-Year Facility Plan)
Characteris	stics	**************************************		
High Energy Density Laborato	ry Plasmas (HEDLP) and	I Inertial Fusion Energy	(IFE): Under NAS reviev	V
E.U., Japan, China, Korea, Indi	a DEMO Strategy: IFMIF	<u>-EVEDA, J1-60SA Iokan</u> এ	<u>nak, DEMO</u>	
♦ IFMIF-EVEDA start	Complete; DEMO Design St	art 🔗 Co	mponent Fabrication \diamondsuit Co	nstruction Operation (2038
♦	JT-60SA operation \diamond I	FMIF 🗘 20 dpa	$^{\diamondsuit}$ 150 dpa	
2010 2	015 24	020 20	25 203	30 203

*Please refer to 2011-Peng-FST-v60-n2-p441. Thank you.

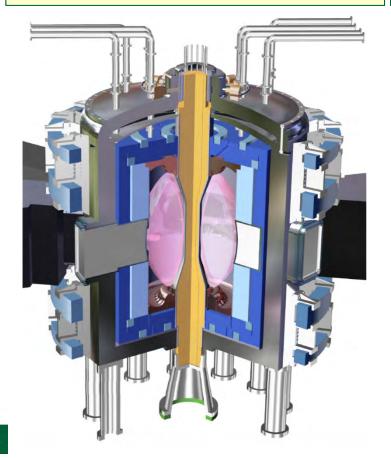
2

Fusion Nuclear Science Facility (FNSF) is to address this need of experimental database

- <u>FNSF objective</u>: Provide a continuous fusion nuclear environment of copious neutrons, to develop experimental database on nuclear-nonnuclear coupling phenomena in materials in components of plasma-material interactions, tritium fuel cycle, and power extraction.
- <u>Wide time and size scales of synergistic phenomena</u>: *ps to year, nm to meter, involving all phases of matter.*
- <u>R&D cycle</u>: Test, discover, understand, improve / innovate solutions, and retest, until experimental database for DEMO-capable components are developed.
- Complement ITER objectives and prepare for CTF in ITER era:
 - Low Q (≤ 3): 0.3 x ITER
 - Neutron flux $\leq 2 MW/m^2$: 3 x
 - *Fluence* = 1 *MW-yr/m*²: 5 *x*
 - *t*_{pulse} ≤ 2 wks: 1000 x
 - *Duty factor* =10%: 3 x

Capabilities required to fulfill this mission

<u>Accompanying R&D: to increase Mean Time Between Failure (MTBF)</u> of test components

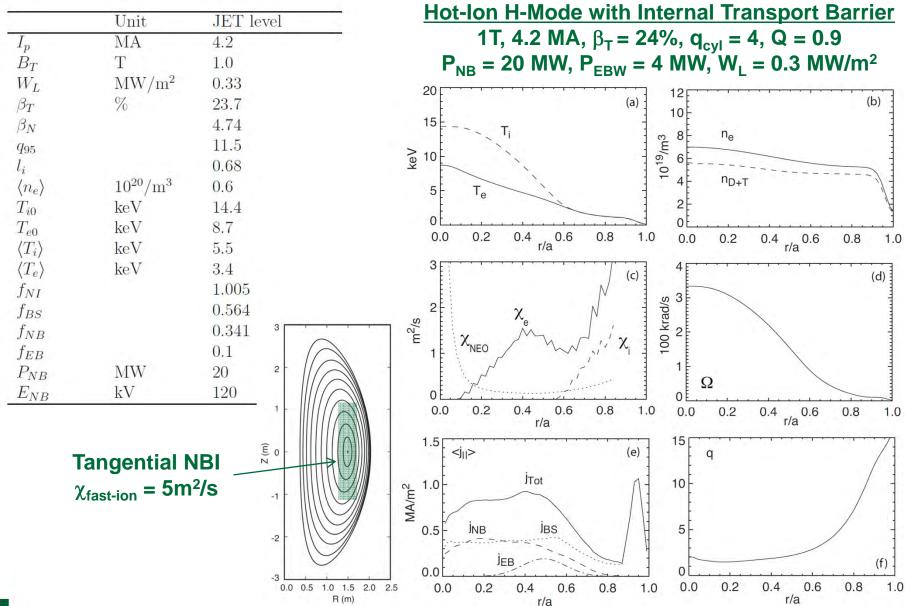

- Development of qualified internal component options, including material choices, e.g., DCLL, WCSB, blanket designs.
- Instrumentation for test divertors, blankets, T breeders, FW, NBI, RF launchers, diagnostic systems, TF center post (for ST)
- Components to control plasma dynamics, H&CD, fueling, I&C

FNSF Capabilities: to increase duty factor and fluence, reduce Mean Time to Replace or Repair (MTTR)

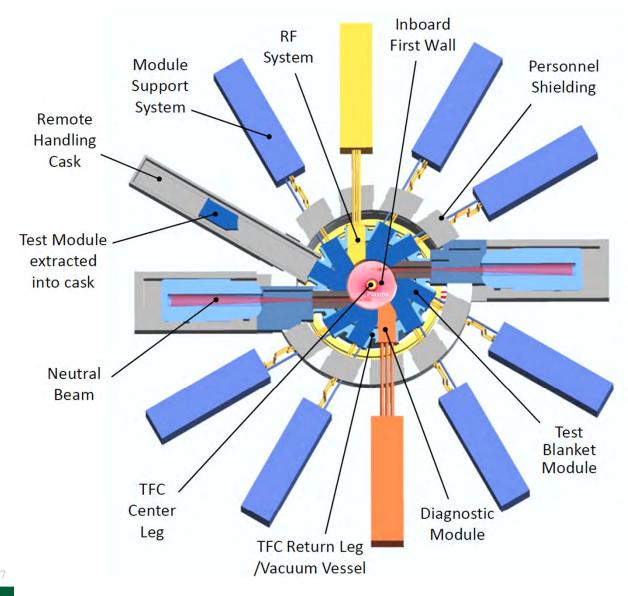
- Reliable plasma operation with limited disruption, ELM, and impact
- Remote handling (RH) of modularized test components of all viable options
- Hot cell facilities and laboratories, pre- and post-test investigation systems and tools.
- Device support structure and systems behind test modules and shielding long facility life and upgradability to CTF mission.

<u>FNSF-ST, assessed to have good potential to provide the</u> <u>facility capability required in progressive stages</u>

- R₀ = 1.3m, A = 1.7
- $H_H \leq 1.25, \, \beta/\beta_N \leq 0.75, \, q_{cyl} \geq 4$
- J_{TF-avg} ≤ 4kA/cm²
- Mid-plane test area $\geq 10m^2$
- Outboard T breeder ~ 50m²

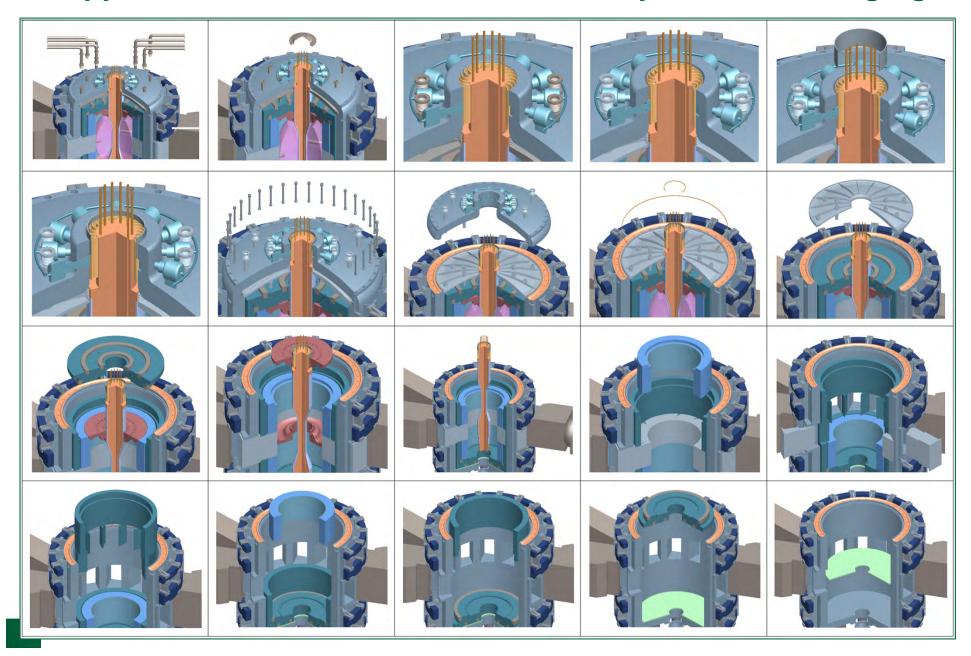


- I-DD: 1xJET, verify plasma operation, PMI/PFC, neutronics, shielding, safety, RH system
- II-DT: 1xJET, verify FNS research capability: PMI/PFC, tritium cycle, power extraction
- III-DT: 2xJET, full FNS research, basis for CTF

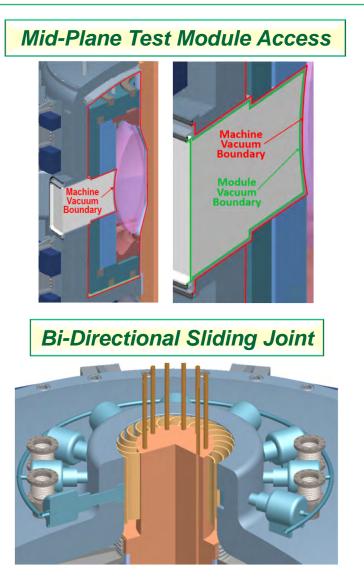

IV-DT: 3xJET, "stretch" FNS & CTF research

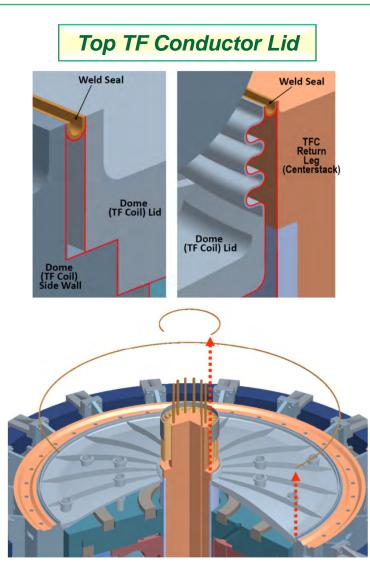
Stage-Fuel	I-DD	II-DT	III-DT	IV-DT
Current, I _p (MA)	4.2	4.2	6.7	8.4
Plasma pressure (MPa)	0.16	0.16	0.43	0.70
W _L (MW/m ²)	0.005	0.25	1.0	2.0
Fusion gain Q	0.01	0.86	1.7	2.5
Fusion power (MW)	0.2	19	76	152
Tritium burn rate (g/yr)	0	≤105	≤420	≤840
Field, B _T (T)	2.7	2.7	2.9	3.6
Safety factor, q _{cyl}	6.0	6.0	4.1	4.1
Toroidal beta, β_{T} (%)	4.4	4.4	10.1	10.8
Normal beta, β_N	2.1	2.1	3.3	3.5
Avg density, n _e (10 ²⁰ /m ³)	0.54	0.54	1.1	1.5
Avg ion T _i (keV)	7.7	7.6	10.2	11.8
Avg electron T _e (keV)	4.2	4.3	5.7	7.2
BS current fraction	0.45	0.47	0.50	0.53
NBI H&CD power (MW)	26	22	44	61
NBI energy to core (kV)	120	120	235	330

<u>Steady state plasma operation at JET DT level is simulated</u> using benchmarked TGLF (GA), awaiting ST-Upgrade data


Mid-plane test modules, NBI systems, RF launchers, diagnostics are arranged for ready RH replacement

Mid-plane ports


- Minimize interference during remote handling (RH) operation
- Minimize MTTR for test modules
- Allow parallel operation among test modules and with vertical RH
- Allow flexible use & number of mid-plane ports for test blankets, NBI, RF and diagnostics


FNSF internal components assembly/disassembly concept support structure lifetime dose < 0.1 dpa enables staging

Ready replacements, shielded vacuum weld seals and bi-directional sliding joint are proposed to allow RH

To reduce Mean Time to Replace (MTTR) and achieve 10% Duty Cycle

<u>Structural analysis of optimally designed centerpost</u> (Arnie Lumsdaine, SP1-17)

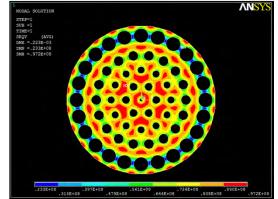
Objective: minimize peak Von Mises stress by varying radius and positions of cooling channels

Assumptions:

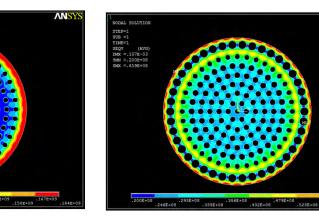
- Nuclear and Joule heating
- Constant water flow
- Constant Copper thermal & electrical conductivities
- ≥5 mm between channels and to surface

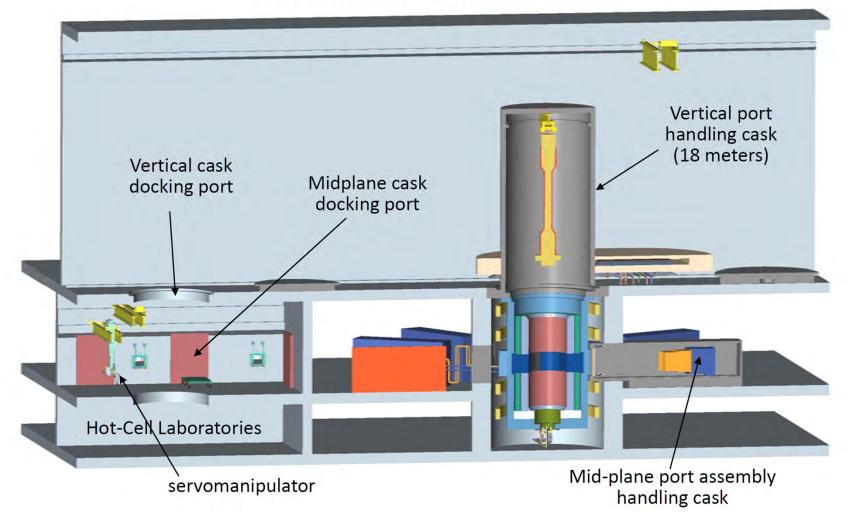
Optimization approaches:

- Sequential quadratic
- Particle swarm
- Broyden, Fletcher, Goldfarb, Shanno algarithm
- VisualDOC linked to ANSYS


<u>Better with 8 roles of channels:</u> <u>For W_L=2MW/m²</u>

- Peak stress reduced to 1/3 to ~100 MPa
- Peak *∆* temp reduced to 60C

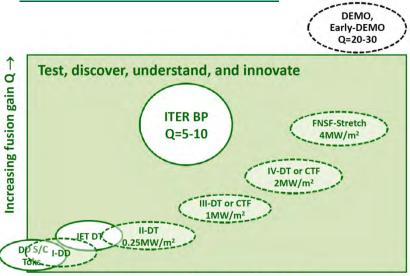

Initial



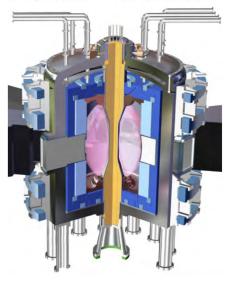
ANSY

Extensive remote handling systems, including hot-cell laboratories, will be required

Remote handling equipment for hot cell laboratories to enable fusion nuclear sciences R&D



To manage the risks, requisite R&D can be defined addressing the FNSF features (STs & Tokamaks)


- Solenoid-free plasma start up, using ECW/EBW, Helicity Injection (STs).
- Hot-Ion H-Mode operational scenarios with strong tokamak database (STs & Tokamaks).
- SOL-Divertor with improved configurations to limit heat fluxes ≤10 MW/m², and control fuel and impurities (extended divertor – MAST-U).
- Continuous, disruption-minimized, non-inductive plasma operation in regimes removed from stability boundaries (STs & Tokamaks).
- Continuous PI NBI (JET-like?) & 60 GHz gyrotrons (Tsukuba?)
- Single-turn TF coil center post engineering and fabrication (industry).
- Remote handling (RH) systems and modular internal components, to minimize MTTR to achieve a duty factor of 10% (nuclear R&D facilities).
- RH-enabled maintenance and research hot-cells (nuclear R&D facilities).
- Low dissipation, low voltage, high current, dc power supply with stiff control of current (HTSC based generators?).
- Nuclear grade R&D users' facility infrastructure (national labs).

Accompanying FNS R&D Program to develop, design, instrument, and operate all internal components & options, in concert with

FNSF aims to carry out fusion nuclear science R&D in cost and time effective manner

Increasing fusion neutron flux \rightarrow

- Complements & supports world DEMO.
- Complements & parallels ITER in concert with accompanying R&D; increase MTBF.
- Uses remote handling, hot cells, shielded vacuum seals, bi-directional sliding joint, etc. to reduce MTTR.
- Saves time & cost: compact, modest Q, reliable plasma, low P_{fusion}, high W_L, low tritium usage.
- Starts with JET-level Q<1 plasma and moderate W_L~0.3MW/m².
- Advances Q and W_L in stages , from DD to DT & from FNS to CTF, ending with possible electricity generation modules.
- Wide design parameter space available: R = 0.8-1.3m, W_L = 0.6-2.0 MW/m², P_{DT} = 18-150MW. ⇔ performance, cost, R&D, time scale, and risk tradeoffs (w. CCFE).
- Mission & objectives apply to normal A.