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abstract
A System design code for LHD-type heliotron reactors HELIOSCOPE (Heliotron System Design Code for Reactor
Performance Evaluation) is developed and design window analyses are carried out. Design windows of an LHD-type
heliotron reactor depends strongly on the geometric configuration of helical and vertical field coils. Thus minimum blanket
space at the inboard side of the torus is one of the key design parameters. Refinement of the models for the evaluation of
engineering and physics constraints are needed to improve reliability of the analysis.

Introduction 3. Example of a system analysis
Helical systems inherently have suitable properties as a * Design windows of an LHD-type heliotron reactor depends
DEMO and a commercial fusion reactor. strongly on the geometric configuration of the helical and
Optimization of the design point and feedback to plasma the vertical field coils.
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and the required confinement improvement
relative to the LHD experimental results
with a constant stored magnetic energy.

for an LHD-type heliotron reactor with helical
pitch parameter of .=1.20 (y,=ma_/(IR.)).
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* Areduction in the minimum blanket thickness at the
Plant power flow iInboard side of the torus can moderate both physics
o P Po o T o and engineering requirements.

Fig.1 Flowchart of the system design code for heliotron reactors HELIOSCOPE.

4. Summary and future work

 Asystem design code for LHD-type heliotron reactors is
developed and design window analyses are carried out.

Engineering design by evaluating
» Maximum magnetic field on helical coil using the scaling
law [3] (extension of Yamazaki's scaling[4]):

B LT 055 0156 m0 06 018 * Design windows of an LHD-type heliotron reactor depends
< 0.85(1+ar) ™" m 03y 0136 £076 1 strongly on the geometric configuration. Thus the minimum
> Stored magnetic energy directly calculated using blanket space is one of the key design parameters.
Neumann’s law. .o * Refinement of the calculation models by reflecting the
Plasma performance is evaluated by ook latest physics/ engineering models and the result of the
) I R I = s detailed configuration optimization studies are planned to

» 0-D power balance model which
reflects given density/temperature
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improve reliability of the analysis.
 Parametric scans of the model parameters themselves are

profiles and the plasma shape base &° _ _ _
on the vacuum equilibrium: _2_ S effective to secure the robustness of the design window.
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