

R&D FACILITIES OF KOREA, PLANNED IN ITER ERA

Hyuck Jong Kim, Hyoung-Chan Kim, Young-Seok Lee, and Jun-Ho Yeom

National Fusion Research Institute, Daejeon, 305-806, Korea hjkim21c@nfri.re.kr

Operating Definition of K-DEMO

design concept system design study eFront-end DEMO | e DEMO plant safety R&D activities and licensing study

nd prove feasibilities

DFMO construction

Staged Development

• 1st Phase : To validate technical feasibility

2022	2024	2025	2029	2033	2035	2036
Construction permit	Start excavation	Select materials	Start installation of major components	Start commissioning	Start operation	First electric power generation

■ 2nd Phase : To prove economic feasibility

	2030	2033	2037	2038						
	Select a new set of DEMO materials (2030)	Complete design improvements (2033)	Second stage DEMO construction permit	Start improvement of DEMO plant						

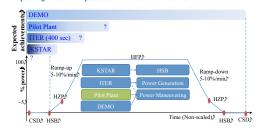
Design Parameters

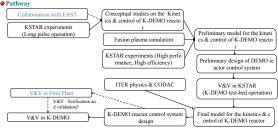
Pressurized Water Cooled Reactor			1st Stage	2 nd Stage	
Rated Power			60 MWe	600 MWe	
Availability			~10 %	> 50 %	
K-DEMO reactor	Fusion power		0.2 GW	2 GW	
	Major radius		8.14 m		
	Plasma minor radius		2.8 m		
	Elongation (95% flux)		1.8		
	Tri-angularity (95% flux)		0.35		
	Plasma current		9 MA	21 MA	
	Fusion gain		> 13.5	>30	
	Normalized beta		≥ 4	≥ 4	
Magnetic field			6 T	TBD	
Average neutron wall load			0.2 MW/m ²	2 MW/m ²	
Divertor peak heat load			1 MW/m ²	10 MW/m ²	
RCS* temperature T _{in} (°C) / T _{out} (°C)		290 / 330	TBD		
Thermal cycle			Rankine / Saturated Steam		
Irradiation damage			4 dpa	200 dpa	
* RCS : Reactor	coolant sy	stem of K-DEMO reactor.		•	

Gaps and Pathways to the 1st Stage K-DEMO

Fusion Reactor Control

- Postulated operating modes of K-DEMO
- Ocld shut-down (CSD): Reactor coolant system (RCS) at atmospheric pressure and below boiling temperature; Magnets and H&CD not energized; Vacuum not established.
- Hot stand-by (HSB) : Pressure and temperature at or near that of power operation: Vacuum fully established: Magnets and H&CD in operation: D-D plasma in operation
- Hot-zero-power (HZP): D-T reaction triggered; Reactor power 3~5 % of the rated power
- Hot-full-power (HFP): Reactor power at the rated power


Desired Coal


- . Heat-up from CSD to HSB and cool-down to the reverse direction in a controlled way
- Indefinitely sustaining HSB condition;
- Maneuvering from HSD, HZP to HFP and vice versa in a controlled way;
- Thermo-hydraulic (T-H) loads and MHD loads, incurred by the reactor operation, to the piping systems K-DEMO reactor shall not exceed stress allowable limits both instantaneously and cumulatively

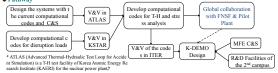
- Carrying out KSTAR experiments to find a way to get HSB.
- DEMO-reactor-control study just began

Fusion Reactor Control (Continued)

Operating modes and expected achievements of the R&D facilities

Tritium Breeding

- Desired Goal: Self Sufficiency
- Current Status: Self-sufficient with the current computational codes & databases (Need V&V)

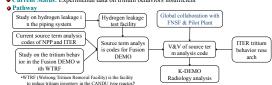


Fusion Reactor System Design

Desired Goal

- V&V of computational T-H codes in the T-H test facilities
- Stress analysis completed in compliance with the MFE C&S (ASME Section III Division IV)
- Engineered-safety features designed in accordance with the regulatory requirements and safety analysis
- Improvement in H&CD and magnets
- Current Status: Conceptual design of fusion reactor systems just initiated

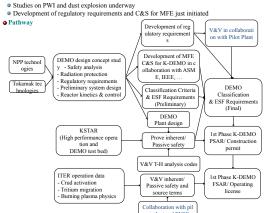
Pathway


Structural Integrity of In-Vessel Components

- Opesired Goal: Structural integrity of the in-vessel component with irradiation damage of 4 dpa
- Current Status: Database of irradiation damage for the structural materials insufficient

Radiation Protection

- Desired Goal: V&V of source terms
- Current Status: Experimental data on tritium behaviors insufficient



Safety & Licensing

Desired Goal

- V&V of inherent safety and safety analysis methods
- PWI and severity of dust explosion quantified
- Regulatory Requirements and C&S for K-DEMO prepared

OCurrent Status

R&D Facilities of Korea in ITER Era

(Reactor control)

(Safety and Licensing)

· Radiation protection

· Safety and Licensing