Stellarator Options For MFE Development

M.C. Zarnstorff Princeton Plasma Physics Laboratory

1st Workshop on MFE Development Strategy in China 5 January 2012

Outline

- Introduction and motivation
- Goals and requirements for Fusion Energy Pilot Plant
- Stellarators: opportunity to simplify fusion physics
- Stellarator pilot plants
- Conclusions

Charting the Roadmap to Fusion Energy: Options for a Next Step

How best to address R&D needs & risks before DEMO? Evaluating: AT, ST, Stellarators

What must we learn beyond ITER?

ITER: 500 MW for 400s, gain > 10 pulsed gain > 5 steady

DEMO: ~2500 MW, continuous, gain > 25, ~ same size and field.

This requires plasmas with:

- Higher β , by at least factor of ~2.2
- Less external current drive, more efficient CD No inductive current
- Essentially no disruptions or ELMs
- Stable confinement of α -particles
- Low-temperature plasma exhaust
- And: technological advances for T-breeding & burning environment

Issues: How to sustain plasma confinement? How to keep it stable & disruption free?

ITER (~ 2021/2027)

Pilot plant goals, requirements

Integrate key science and technology capabilities of a fusion power plant in a reduced-scale R&D facility.

- Target needed capabilities:
 - Net electricity production
 - Efficient operation, low recirculating power
 - Fusion nuclear component testing
 - Steady-state operation
 - Tritium self-sufficiency
 - Neutron wall loading \geq 1MW/m²
 - Maintenance scheme applicable to power plant
 - Demonstrate methods for fast replacement of in-vessel components
 - Eliminate disruptions

Key pilot metric is overall electrical efficiency: Q_{eng}

Wall Plug Efficiency & Current Drive Efficiency Are Critical

DEMO assumptions:

D.Stork 2009

 $\begin{array}{ll} \eta_{WP} \bullet \gamma_{CD} = 0.24 - 0.27 \\ \hline \eta_{WP} \bullet \gamma_{CD} \sim 0.12 - 0.14 \\ \hline \theta_{WP} \bullet \gamma_{CD} \sim 0.08 \end{array}$

ICRF η_{WP}• γ_{CD} ~ [0.18 – 0.24] • f_{coupled} (where f_{coupled} = fraction of generator power coupled at edge of plasma ~ 0.4 max H-mode – note no experiment has ever coupled >12MW ICRF power into an H-mode) ~0.07 – 0.095 for H-mode

Lower Hybrid CD η_{WP}• γ_{CD} ~ [0.15 – 0.18] •f_{coupled} (LH klystrons are ~ 50% efficient – again f_{coupled} is fraction of generator power coupled by grill to plasma – note, no experiment has ever coupled more than 4MW LH power into an H-mode)

• $\eta_{WP} = P_{CD}/P_{electrical}$

- Most DEMO studies very optimistic. Realistic values imply much higher recirculating power
- NBI, ICRF, LH require large launchers; impact tritium breeding

Stellarators: Equilibrium from Helical Shaping

Stellarators

- 3D shape provides poloidal field
- No driven current in plasma
 Very low recirculating power
- No disruptions: equilibrium maintained with or without plasma
- Simple steady state:
 - LHD ~ 1 hour pulses

Large Helical Device (Japan) A = 6-7, R=3.9 m, B=3T Superconducting

~ 40 shaping parameters controllable with 3D

only ~ 4 shaping parameters available if axisymmetric \Rightarrow more ability to control plasma thru magnetic shape.

Stellarator Operating Range is much larger than for Tokamaks

Density limit ~5 X equivalent
 Greenwald density limit (from tokamaks).

• LHD
$$n_{e0} = 1.2 \times 10^{21} \text{ m}^{-3} \text{ at } \text{B} = 2.5 \text{ T}$$

p(0) = 1.5 atm

- Can operate with q>2, even q>1
- No disruptions.
 Limits are not due to MHD instabilities.
 - High density favorable:
 - Lower plasma edge temperature, Eases edge design
 - Reduces energetic particle instability drive

High β Steady State, without Disruptions

- β =5.4% (LHD)
 and β=3.4% (W 7-AS)
 without <u>any</u> disruptions.
 Quiescent steady-state.
- Soft limit is observed, due to saturation in confinement.

- Highest β ~ twice ideal stability threshold. In W7AS: no MHD activity. In LHD: saturated MHD observed.
- β-limit appears to be due to equilibrium limits (flux surface breakup). Can be improved by design (W7X).

Stellarator Energy Confinement Similar to Tokamaks

- Stellarator τ_{E} data similar to tokamak ELMy H-mode
- ISS-04 confinement scaling derived from Stellarator L-mode data base. Gyro-Bohm like.
- ITER Tokamak Confinement DB in reasonable agreement with ISS-04 scaling
- T_i = 7 keV without impurity accumulation (LHD)

Stellarators Provide Solutions To Fusion Challenges

Steady-state toroidal plasmas with

- ✓ No disruptions. Equilibrium maintained by external coils
- ✓ Quiescent steady state at high-beta with confinement similar to tokamaks.
- Not limited by macroscopic instabilities. No need to control profiles. No need for feedback or rotation to control instabilities. Greatly simplify plasma control and related diagnostics
- ✓ Very high density limit \Rightarrow easier plasma solutions for divertor

reduced fast-ion instability drive

✓ No current drive \Rightarrow intrinsically high Q, higher reliability

Greatly simplifies many aspects of Pilot Plant and DEMO designs.

Need to achieve these properties simultaneously, compatibe with highpower divertor.

Hybrids: 3D Ohmic Tokamaks (1970s)

Hybrids with encircling helical windings

CLEO (UK), JIPP-IB (Japan),

L-2 (USSR), W7-A (Germany)

+ No disruptions if iota-coils > 0.14 (q-vac < 7)

+ very low-q(a) operation possible:

L-2: q(a)=1, CLEO: q(a)=1.4, W7-A: q(a)=2

Recent Hybrid Experiment

CTH (Auburn Univ.)

+ No disruptions if iota-coils > 0.1 (q-vac < 10)

How to get good orbit confinement??

3D Configurations: Need to Optimize for Good Confinement

3D: No symmetry \Rightarrow no conserved canonical momenta \Rightarrow lost orbits \Rightarrow rotation is strongly damped

- 3D transport due to magnetic ripple
 - Collisionless ion thermal transport $\chi_i \propto \varepsilon_{eff}^{3/2} T_i^{7/2}$ (excl. E_r effects)
- 'Quasi-symmetry'
 - (Boozer, 1983) Orbits & neoclassical transport depend on variation of IBI within flux surface, not the vector components of B !
 - If IBI is symmetric in flux coordinates, get confined orbits like tokamak
 - Can be perfected on one surface in toridal system; degrades mildly
 - ⇒ Neoclassical transport very similar to tokamaks (theoretically), undamped rotation

Confinement Optimization Approaches

Different types of quasi-symmetry

- Quasi-axisymmetry
 - Tokamak like confinement properties
 - Optimized designs down to A~2.5
 - Turbulence predicted to be similar to reversed shear in tokamaks
- Quasi-helical symmetry
 - Neoclassical transport ~1/3 of tokamaks
 - Optimized designs down to A~8
 - Predicted turbulence >> tokamaks in evaluations so far
- Quasi-isodynamic / Quasi-poloidal symmetry
 - Neoclassical transport ~ eliminated!
 - Optimized designs down to A~8
 - Predicted turbulence lower than comparable tokamak

$T_i = 7 \text{keV}$ in LHD: χ_i at 3D Neoclassical Levels

- Peaked profiles of V_{ϕ} as well as T_{i} . ITB forms
- The ion thermal diffusivity (χ_i) decreases and reaches neoclassical level -> reduction of anomalous transport
- Core χ_i -neo ~ 2 m²/sec due to ripple.

Low Ripple Magnetic Field Important for Good Confinement

- Global confinement scaling for stellarators (ISS04v3) found strong dependence on ripple magnitude.
- Gyrokinetics: turbulence reduced at low ripple.
- H (ISS04) up to 1.5 obtained at low ripple
- All new configurations designed for low ripple (HSX, W7X, NCSX)

Quasi-helical Symmetry in HSX has Similarities to 2D Transport Physics

- HSX demonstrated quasi-symmetry reduces transport of momentum, heat, and particles, compared to conventional stellarator.
- Present focus is on exploring neoclassical and anomalous transport in ECRH plasma & 3D equilibrium reconstruction.

Large (~20 km/s) flows in direction of symmetry measured by CHERS.

Model w/o shear suppression Internal transport barrier due to neoclassical E_r shear.

W 7-X Optimized for High-β, Quasi-Isodynamic

- 5 periods, R/(a)=11, R=5.4 m
 Superconducting coils
- Quasi-isodynamic: neoclassical transport minimized by minimizing drift-orbit widths. An approximation to quasi-poloidal symm. Theory projections H_{ISS04} : 2-3

- Bootstrap current & Pfirsch-Schluter current minimized to minimize change in equilibrium with increasing β. This also implies strong rotation damping (including zonal flows)
- MHD Stable for $\beta = 5\%$
- Designed for good vacuum flux surfaces. Current minimization keeps good surfaces to β =5%

NCSX: Optimized Design for High-β, Quasi-Axisymmetry

- 3 periods, R/(a)=4.4, (κ)~1.8 , (δ)~1
- Quasi-axisymmetric: tokamak with 3D shaping Ripple-induced thermal transport insignificant. Build on ITER results. Allows lower Aspect ratio.
- Passively stable at β=4.1% to kink, ballooning, vertical, Mercier, neoclassical-tearing modes (steady-state AT β limit ~ 2.7% without feedback)
- Stable for at least $\beta > 6.5\%$ by adjusting coil currents
- Designed to keep ~perfect flux surfaces to β =4.1% 2-fluid calculations indicate it may continue to β > 7%
- Passive disruption stability: equilibrium maintained even with total loss of β or bootstrap current.

G.-Y. Fu L.P. Ku H. Neilson A. Reiman M. Zarnstorff

Stellarator Divertors Offer New Characteristics

- W7-AS and LHD have operated with closed helical divertors. W7-X will start up with divertor. Substantial modeling developed.
- Stellarator divertors have much longer connections length > 100m Easier to decouple from main plasma
- High density operation drops divertor temperature, reduces sputtering
- Ergodic divertor region expands footprint on divertor plates.

Stellarator Reactor Studies: QA comparable to Tokamak Designs

Focus on Quasi-axisymmetry (QA) for 3D tokamaks

0.80 • $|B| = |B| (\theta, \rho)$, like axisymmetry Can be added continuously to axisymmetry, keeping good orbits 0.60 **Ballooning Eigenvalue** MHD stability characteristics similar for QA 0.40 and tokamaks: -Elongation, at high triangularity, stabilizes ballooning 0.20 -QA can access 2nd stablity (Hudson & Hegna) 0.00 NTMs stabilized by negative shear Even without disruptions, this is important to -0.20 prevent confinement degradation by MHD MCZ 120105 23

Method: Add QA shaping to Achieve Goals

- Base case: Advanced Tokamak κ = 1.8, δ ~ 1, A = 4, β = 4%
- Add 3D QA shaping, producing vacuum rotational transform, iota-vac: 0.05 – 0.3. Use 3 field periods.
- Optimize 3D shaping to keep

-residual ripple ε_{eff} < 1% in plasma core for good orbits

-vacuum magnetic well of 2-3%, for general stability

- Vary shape, aspect ratio (and # periods)
- Examine impact on coil complexity

lota-vac = 0.05 : Vertical stability

- Need externally driven current to keep good equilibrium
- No need for vertical position control.
- May eliminate VDEs
- If eliminate Ip, lose radial position.
 Probably will disrupt.

Vertical stability can also be achieved just with 3D shaping, with iota-vac=0 (Reiman 2007)

Iota

Iota-vac ~ 0.1 : Sustainment without CD

- Good equilibrium with bootstrap current alone. Shafranov shift ~ 35% of minor radius.
- Steady-state compatible with simple startup
- NTM stable
- Probably not disruption-proof

lota-vac ~ 0.2 : Robust equilibrium

- Bootstrap current only. No external CD.
 Simple steady-state
 NTM stable
- Flux surfaces only displace slightly if abruptly loose I_P and β
 ⇒ should be robust against disruption
- Iota-vac > 0.14 the empirical disruption stability criteria from W7-A

Iota

lota-vac ~ 0.28 : External kink & RWM stabilized

- No need for external CD.
 Simple steady-state
 NTM stable
 No disruptions
- External kink / RWM stabilized shaping not feedback or nearby wall.
- Can further increase iota_vac to 0.6 ⇒ only 10% of transform from bootstrap current

Iota

Stellarators Reduce Risks for Pilot Plants

• Plasma configuration sustained by coils

 Don't require steady-state neutral beams and RFlaunchers in burning environment

- Sustained, quiescent high-beta plasmas already demonstrated
- Robust confinement: no disruptions,

can avoid edge instabilities (ELMs)

-Allows thin first wall for breeding

-No need for conducting wall in blanket

⇒ Increase TBR & reduce wall complexity

Stellarators Reduce Risks (2)

- Don't need instability or profile feedback control
 - Reduce need for diagnostics, feedback actuators in burning environment.
 - -Higher reliability
 - But:
 - Higher coil complexity.
 - Small database of optimized experiments

Example Quasi-Axisymmetric Stellarator Pilot Plant

- A = 4.5 = 4.75m / 1.05m
- $B_T = 5.6T$, $I_P = 1.7MA$ (BS)
- Avg. $W_n = 1.2-2 \text{ MW/m}^2$
- Peak $W_n = 2.4-4 \text{ MW}/m^2$
- Q_{eng} = 1.1
- Based on ARIES-CS design
- Divertor power flux < 10 MW/m²
- Vertical maintenance between coils

Stellarator Pilot Plant can Operate Q_{eng} > 1 with L-mode Confinement.

Pilot design point

- H_{ISS04} an L-mode scaling, Comparable to H_{ITER97P}
- Q_{eng} > 1 with H_{ISS04}~ 1.
 Due to low recirculating power.

• Can operate $Q_{eng} > 1$ at low fusion power ~ 100 MW.

- Flux sufficient for blanket testing
- Expect higher H, gives higher Q_{eng}, provides margin & reliability.

Stellarator Pilot Plants Available at Reduced Size

- H_{ISS04} =1.5 attained on nonoptimized stellarators
- Could allow CTF with R=3.5m, $\langle a \rangle = 0.77m, B_T=5.4T$ $P_{fus} = 72MW$
- H-mode confinement H=2 gives
 Peak W_n=2 MW/m², P_{fus}=144 MW

• Optimal size depends on blanket thickness and magnet technology.

 W7X will give data on low-ripple, optimized stellarator confinement.
 But, not at low aspect ratio, nor QA
 ⇒ need experiment to validate calc.

Simplify Coils and Maintenance

• Want sector-maintenance to increase availability and reliability.

• Any stellarator configuration can be made using range of coil configurations: helical; modular; TF+saddle coils; combinations.

New strategy for coils:

- Use passive magnetic materials or saddle coils to shape magnetic field.
- Mount on outside of blanket+shield module.

ARIES CS using HTS tiles for shaping.

L. Bromberg, M. Zarnstorff, *et al.* TOFE-19, Las Vegas, Nov. 2010

Passive 3D shaping: Diamagnetic Tiles

- Use bulk high temperature superconducting tiles as diamagnets to shape magnetic field
- Commercially available, up to 25 cm diameter
- Position and orient tiles to produce desired field shape, reacting to field from simple coils.
- Also can use other magnetic materials.

64 YBCO samples batch

Engineering Improvements for High Availability And Simplification

Starting from ARIES-CS:

- Reduce the number of internal components (from ~200 modules in ARIES-CS to 30-70), by increasing size.
- Widen inter-coil openings on the outboard side; straighten the outboard legs.

Maintenance between coils.

 Simplify the in-vessel blanketshield geometry: 3D→2D shapes where possible.

Modified ARIES CS to improve maintenance feasibility

ARIES-CS blanket

HTS wf/bkt/shld

Needed R&D for Stellarators

Sustained high-beta, robust confinement already achieved.

US Assessment (ReNeW & FESAC):

- Simplify coil designs (US design studies) Simplify maintenance strategies for blanket Need to complete design and test materials.
- 2. Demonstrate integrated high performance: high- β , low collisionality (W7X) (NCSX completion?)
- 3. Confinement predictability (LHD, W7X)
- 4. Effective 3D divertor design (LHD, W7X)

Summary

- Stellarators can reduce the risks to advance magnetic fusion
 - Steady-state, disruption free, high beta demonstrated
 - No need for steady-state NBI, in-vessel RF launchers in burning environment
 - Reduce/eliminate need for feedback, diagnostics, actuators in burning environment
- Compact stellarator project to conservative Pilot Plants
 - Pilot plants, even with ~L-mode confinement; R=4.75 m
 - Pilot plants with P_{fusion} ~100 MW, or smaller size with higher confinement
- Concepts identified to simplify coils and provide sector maintenance. Need to complete engineering design & testing.
- Because needed physics characteristics are already demonstrated, stellarators offer a quicker route to a fusion pilot plant

Supplemental

Method: Vary QA shaping to Achieve Goals

- Base case: Advanced Tokamak κ = 1.8, δ ~ 1, A = 4, β = 4%
- Add 3D QA shaping, producing vacuum rotational transform, iota-vac: 0.05 – 0.3. Use 3 field periods.
- Optimize 3D shaping to keep

–residual ripple $\epsilon_{\rm eff}$ < 1% in plasma core for good orbits

-vacuum magnetic well of 2-3%, for general stability

- Equilibrium: VMEC Optimization: STELLOPT Ideal low-n stability: TERPSICHORE, ballooning: COBRA
- Vary shape, aspect ratio (, # periods)
- Examine impact on coil complexity

ARIES-CS: a Competitive, Attractive Reactor

MCZ 120105 41

 $\sigma_{max} = 1.16\%$ $\sigma_{min} = 0.303$ ov. $c_h = 1.16\%$, tropped part. $\langle t_t \rangle = .383$ $B_{max} / B_{s} = 1.060$ $B_{min} / B_{s} = .906$ ov. $s_{h} = 3.41$ %, tropped port. $\langle t_{h} \rangle = .344$ $B_{max} / B_o = 1.105$ $B_{min} / B_o = .926$ ov. $e_h = 5.71\%$, tropped port. <h > = .443

Stellarators: Eliminate or Weaken Non-linearity

- Equilibrium maintained by coils, not current drive.
 Simple steady-state.
- Equilibrium maintained without plasma.
- Not limited by MHD instabilities. No need to control profiles.
- Greatly simplify plasma control needs.

ala Politzer, 2005

Large International Superconducting Stellarators

- Large Helical Device (Japan)
 Non-symmetric
 - A = 6-7, R=3.9 m, B=3T

Wendelstein 7-X (Germany)
QP optimized design
A = 11, R=5.4 m, B=3T

- Focused on steady state, including power handling. LHD has achieved 54minute pulses.
- Optimized for other properties than quasi-symmetry ⇒ flows strongly damped
- Not compact. Extrapolate to larger fusion systems than favored in U.S.
- Neither can directly build on or inform tokamak understanding.

Trial Problem: Eliminate TF Ripple For 8-coil TF

- Simple geometry

 8 TF-coils at R=6m axisymmetric
 - Use HTS tiles at R=4.8m to eliminate ripple at R≤4m
- Tilt tiles so that they interact with toroidal field
- Can zero or reverse ripple Magnitude of IBI change similar to need for stellarator

Stellarator Operating Range is much larger than for Tokamaks

- Using equivalent toroidal current that produces same edge iota in Greenwald evaluation.
- LHD $n_{e0} = 10^{21} \text{ m}^{-3} \text{ at B} = 2.7 \text{ T}$ 3-5 X Greenwald limit
- No disruptions.
 Limits are not due to MHD instabilities.
 - High density favorable:
 - Lower plasma edge temperature, Eases edge design
 - Reduces energetic particle instability drive

Stellarator Energy Confinement Similar to Tokamaks

- Stellarator τ_{E} similar to ELMy H-mode
- T_i = 6.8 keV without impurity accumulation (LHD)
- Discharge duration ~ 1 hr with P ~ 0.6 MW, limited by PWI

• $\langle \beta \rangle \approx 3.4 \%$: Quiescent, Quasi-stationary

- B = 0.9 T, iota_{vac} ≈ 0.5
- Almost quiescent high- β phase, MHD-activity in early medium- β phase
- In general, β not limited by any detected MHD-activity.
- $I_P = 0$, but there can be local currents
- Peak β~8%

Similar plasmas with
 B = 0.9 - 1.1 T, either NBI-alone, or combined NBI + OXB ECH.

• Much higher than predicted linear stability β limit ~ 2%

Stellarators are Achieving Outstanding Results

• Quiescent high beta plasmas,

limited by heating power & confinement

- LHD β = 5.2% transiently; 4.8% sustained
- W7AS β > 3.2% for 120 τ_E
- + $\tau_{\rm E}$ similar to ELMy H-mode
- Improved confinement with quasi-symmetry
 - HSX finds reduced transport of momentum, particles, and heat with quasi-symmetry.
- Very high density operation, limited only by heating power, without confinement degradation
 - Up to 5 x equivalent Greenwald density (W7AS)
 - LHD n_e(0) up to 10²¹ m⁻³ at B=2.7T !
- Importance of divertors to control recycling

Steady state: LHD pulse lengths up to 55 minutes

Vary β_N between 2 and 5 and f_{CD} between 0 (ohmic) and 0.3 and assume conventional technology (η_{WP} =0.25, η_{TD} =0.3, P_{BOP} =50 MW, η_{BOP} =0)

The objectives of acceptable f_{rec} and significant $P_{el,net}$ can be fulfilled relatively easily (e.g with f_{CD} =0.1 and β_N =3, $P_{el,net}$ =350 MW with f_{rec} <0.4), but pulse length is nowhere near the target!

Even P_{fus} =3 GW (β_N =4.2, f_{CD} =0.2, f_{rec} =0.33) only gives $\tau_{pulse} \approx$ 3 hrs Zohm 2011 H. Zohm, Fus. Sci. Technology 58 (2010) 613.

High β: Quiescent, Quasi-stationary

Almost quiescent high-β phase,
 Peak β~8%

MHD-activity only in early medium- β phase

 No disruptions: β not limited by any detected MHD-activity.

• Similar plasmas with B = 0.9 - 1.1 T, either NBI-alone, or combined NBI + OXB ECH.

• Much higher than predicted linear MHD stability β limit ~ 2%