Preliminary consideration on basis and requirements of core plasma for next CFETR

Baonian Wan Institute of Plasma Physics Chinese Academy of Sciences

Input for core plasma

- Fusion power and gain、 neutron load on the wall、 plasma (burning) duration、 etc
- Physics basis (operation scenarios, stability margins, plasma control, etc)
- ➢ ITER baseline: type I ELM-H mode (hybrid, RS)
- constrains (heat load on divertor plates, cost, nuclear license)

Tools for core plasma design

- Zero dimensional model
- Based on the scaling rules
- One dimensional model
- Based on existing transport models (equilibrium, transport, stabilities)
- Scale from existing plasmas
- Based on physical relations and existing experiments

Benchmark from each other

Principles for Core plasma design

- To assure the success of the baseline targets:
- Based on already proven physics
- Operation within all stability boundaries (conservative implementations)
- To keep capabilities for very advanced scenarios
- Explore newest advances of physical understanding and technology developments
- To keep flexibilities for research of advanced physics and developments of new technologies

Operation modes

 $n_{20} \le n_{GR} \equiv 0.27 I_p / a^2$

- f_α>50%, f_{bs}>50%, (~80% for AT)?
- Type I ELM-H mode as baseline?
 > Robust (easy access)
- High pedestal allows fusion relevant temperatures in most of the volume
- Heat load due to ELM crash
- > Confinement strongly degrades with heating power ($\tau \sim P^{-0.69}$)
- AT modes for steady-state operation to demonstrate reactor relevant physics and technology feasibilities
 Need further advance of physics

 $q_{95} \ge 3$ Need assessment of synergy effect of operation mode with heating/current drive, control, PWI, etc

Conservative examples $n_{20} = 0.85n_{GR}$

scenarios	Conv.	Conv.	Conv.	Conv.	AT
	High P	Low P	High P	Low P	Low P
I _p (MA)	9	9	10	10	7
P_{aux} (MW)	80	50	80	50	50
q ₉₅	3.5	3.5	3.0	3.0	4.55
Fusion power (MW)	198	149	316	244	192
Q	2.47	2.98	3.95	4.87	3.84
$ \beta_{\mathrm{T}} $	2.66	2.31	3.36	2.95	2.62
$ \beta_{\rm N} $	2.19	1.90	2. 40	2.11	2.81
$ \beta_{\rm P} $	0.92	0.80	0.87	0.77	1.53
$ I_{bs}/I_{p} $ (%)	30.1	26.2	28.6	25.1	50.2
$\tau_{\rm E}$ 92 (s)	1.58	2.05	1.67	2.13	1.40
$\left \tau_{\rm E}^{-} \right _{98Y2}(s)$	1.38	1.82	1.47	1.90	1.19
P_n/A_{wall} (MW/m ²)	0. 48	0.36	0.76	0.59	0.46

R(m)=5, a(m)=1.5, B(Tesla)=5; κ =1.75, δ =0.4; α_n =0.5, α_T =1; Vp(m³)=389;

AT examples using the physics based modeling

Case	A1	A2	A4	A5	B1	B2	B3	B4
Ip (MA)	8.0	8.0	8.0	8.0	6.0	6.0	6.0	6.0
β_{N}	2.52	3.57	4.01	4.45	2.51	3.04	3.58	3.96
P_{fus} (MW)	268	426	480	526	152	204	248	276
l_i	0.97	0.95	0.92	0.9	1.14	0.96	0.96	0.98
q_0	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
q_{95}	3.06	3.15	3.23	3.27	4.41	4.68	4.64	4.78
$p_0/\langle p angle$	2.6	2.7	2.7	2.7	2.8	2.8	2.8	2.8
$eta_{\scriptscriptstyle N, \it ped}$	0. 43	0.48	0.51	0. 53	0. 41	0.42	0. 43	0.44
$I_{bs}/I_{p}(\%)$	39.1	54.8	61.9	68.8	46.9	61.2	70.0	75.6

AT physics?

Ion heating dominated

 $P_{th}^{ITB} \leq 30$ MW on ions However, power preferentially deposit on electrons for reactor relevant plasma